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My research lies in the field of low-dimensional topology, particularly knot theory and its ap-
plications towards the study of 3— and 4-manifolds. My papers and preprints may be found at
http://arxiv.org/a/ray_a_1.

Low-dimensional topology is the branch of topology which studies manifolds of dimension four
and lower. Techniques which have yielded much information about manifolds of dimension five
and higher often fail for 3— and 4-manifolds, and in fact, many specialized tools are needed for
studying these two particular cases. One may consider dimension four as a boundary case between
low and high dimensions: there are enough dimensions for the manifold topology to exhibit complex
behavior, but not enough space for our usual tools to work. This behavior is exemplified by the
following: a closed manifold of dimension three or lower admits exactly one smooth structure; a
closed manifold of dimension five or higher admits at most finitely many distinct smooth structures;
however, a closed 4-manifold may have infinitely many distinct smooth structures.

A link is the image of a smooth embedding of a disjoint collection of circles into 3—space, con-
sidered up to isotopy; a knot is a link with a single component. The study of knots and links is
intimately connected with the study of 3—manifolds as seen in the following famous theorem: any
closed, connected, orientable 3—manifold can be obtained from the 3—sphere by performing a certain
operation (‘surgery’) on some link. Just as the 3-dimensional relation of isotopy is related to the
classification of 3—manifolds, there exist 4-dimensional relations on knots which are relevant to the
classification of 4-manifolds.

My work so far has focused on these 4-dimensional equivalence relations, known as concordance.
Knots under concordance form the knot concordance group, denoted by C. In broad terms, my
research aims to understand the structure of C using the following paradigms.

The action of satellite operators. A reasonable approach to studying any mathematical object
is studying functions on it. In the case of knots, there is a natural choice of such functions, namely
satellite operators, described in Figure I study the action of satellite operators on the knot
concordance group in [Ray13| [DR13 [CDR14| [CR15, IDRI5, Ray15b, [FR15]; this work is described
in Section 1. Satellite operations are of independent interest beyond knot theory since they can
be used to construct interesting examples of 3— and 4—manifolds. It is conjectured that satellite
operators can be used to show that C is a fractal space. They also give quasi-isometries when C is
considered as a metric space.

Filtrations of the knot concordance group. It is natural to seek to assess how ‘close’ a knot
is to being trivial in C, i.e. concordant to an unknotted circle. This notion was initially formalized
when Cochran—Orr—Teichner introduced the solvable filtration of C and showed that the lower levels
of the filtration encapsulate the information yielded by various classical concordance invariants—in
a precise sense, the deeper a knot is within the solvable filtration, the closer it is to being trivial.
Studying filtrations gives us a way of understanding the structure of C, a large unwieldy object, in
terms of smaller (and ideally simpler) pieces. There are several other filtrations of knot concordance.
In [Ray15a] I define a new family of filtrations of C and establish relationships between these and
various other filtrations; this is described in Section 2.

My ongoing and future projects, both within the above programs and otherwise, are described
in Section 3. In my work so far I have used tools from geometric and algebraic topology, contact
geometry, Heegaard—Floer homology, and other techniques.
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1. BACKGROUND

A knot is the image of a smooth oriented embedding S' < S2, considered up to isotopy. There
is a natural operation on IC, the set of all knots, called connected sum which is shown below.
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FIGURE 1. The connected sum operation on knots.

Two knots Ky < S3 x {0} and K; — S x {1} are said to be concordant if they cobound a
smooth, properly embedded annulus in S3 x [0, 1]. Modulo concordance, K forms an abelian group
under connected sum called the knot concordance group, denoted C.

The connected sum operation can be generalized as follows. Given a knot P in a solid torus
(called a pattern) and any knot K (called a companion), we obtain the satellite knot P(K) by
tying the solid torus into K in an untwisted manner, as shown in Figure [2] Any pattern P induces
a function P : C — C taking K — P(K) called a satellite operator. The number of times P wraps
around the positively oriented longitude of the solid torus containing it is called the winding number
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FIiGURE 2. The satellite operation on knots. Here P is a pattern with winding
number two.

We can also work entirely in the topological category; we say that two knots are topologically
concordant if they cobound a proper, topologically embedded, locally flat annulus in S x [0, 1].
Modulo topological concordance, X forms an abelian group called the topological knot concordance
group, denoted C*°P. As before, any pattern P induces a satellite operator P : C%*P — Ct°P,

The knots in the class of the unknot, under either smooth or topological concordance, are impor-
tant objects of study. A knot is called (smoothly) slice if it bounds a smooth, properly embedded
disk in B*, i.e. if it is concordant to the trivial knot. Similarly, a knot is topologically slice if it bounds
a proper, topologically embedded, locally flat disk in B*. There exist infinitely many knots which
are topologically slice but not smoothly slice (see, for example, [End95, [(Gom86, [HK12, [HLRI2,
Hom14]).

A knot is said to be ribbon if it bounds an immersed disk in 2 such that the singularities are of
a particular type (called ‘ribbon’ singularities): it is easy to see that all ribbon knots are smoothly
slice. It is a long-standing open question whether all slice knots are ribbon [Kir97, Problem 1.33].
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2. THE ACTION OF SATELLITE OPERATORS

This section describes my completed work studying the action of satellite operators on the knot
concordance group in rough chronological order. See Section [4] for ongoing and future projects.

2.1. A non-orientable analogue of Kauffman’s conjecture on slice knots. Every knot K
bounds an embedded, connected, compact, oriented surface in S3. If a slice knot K bounds a
punctured torus F' then, up to isotopy and orientation, there are exactly two homologically essential
simple closed curves J; and Jy on F with zero self-linking [Gil83]. If either J; is slice, we can
construct a slice disk for K by “surgering” F along J;, i.e. cut out a small neighborhood of J; on
F and glue two parallel copies of the slice disk for J; to the remainder of F. Consequently, the
curves J; are called surgery curves for F. It can be seen that K is a certain satellite with ribbon
pattern and companion J; [CET09]. In 1982, Kauffman conjectured that a knot with a genus one
Seifert surface F' is slice if and only if F' has a slice surgery curve [Kau87, Strong Conjecture,
pp. 226]. While there has been much evidence in the literature supporting this conjecture, such as
in [CHL10, [COT03, [Coo82) |Gil93], Cochran-Davis |[CD15] have recently shown that Kauffman’s
conjecture is false.

In contrast, I showed that the natural non-orientable analogue of Kauffman’s conjecture is true,
as follows.

Theorem 2.1 ([Rayl3]). If a knot K bounds a punctured Klein bottle F' with ‘zero framing’—a
linking number condition trivially satisfied in the orientable case—then there is a unique surgery
curve J associated with F', K is a winding number two satellite with ribbon pattern and companion
J, and K is slice in a 7 [%] —homology ball if and only if J is slice in o Z [%] —homology ball. This
implies that K is rationally slice if and only if J is.

Being rationally slice is a strong condition; several concordance invariants obstruct knots from
being rationally slice. For example, the Levine—Tristram signature function and Ozsvath—Szabd’s
7-invariant [OS03| are both zero for rationally slice knots. Therefore, our result shows that, in
marked contrast to the punctured torus case, there are very strong restrictions on the concordance
class of surgery curves on punctured Klein bottles.

2.2. Injectivity of satellite operators and a fractal structure on C. Theorem has a
surprising corollary about cable knots. The (p, ¢) cable of a knot K is obtained by applying the
satellite operator induced by the (p, ¢) torus knot to K.

Corollary 2.2 (|[Rayl3]). Given knots K and J and any odd integer q, the (2, q) cables of K
and J are concordant in a 7 [%]fhomology S3 x [0,1] if and only if K is concordant to J in a
Z [%] ~homology S® x [0, 1].

The above is a result about the injectivity of cabling operations. Call a satellite operator weakly
injective if P(K) = P(U) implies K = U, and injective if P(K) = P(J) implies K = J. Here U is
the trivial knot and ‘=’ denotes concordance in some category. A long-standing open question asks
if the Whitehead doubling operator is weakly injective on C [Kir97, Problem 1.38]. In [CHL11],
several ‘robust doubling operators’ were introduced and evidence was provided for their injectivity.
However, Corollary was the first complete result in the realm of injectivity, albeit in terms
of concordance in Z [3]-homology S® x [0,1], i.e. ‘Z [3]-concordance’. In [CDRI4], we greatly
generalized this result.

Theorem 2.3 ([CDRI14, Theorem 5.1]). Any strong winding number £1 satellite operator P is
injective on C'°P. It is also injective on knots modulo concordance in a possibly exotic S* x [0, 1],
which is the same as smooth concordance if the smooth 4—dimensional Poincaré Conjecture holds.

Any winding number n # 0 satellite operator is injective on the group of Z [%] —concordance
classes of knots.
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FIGURE 3. A strong winding number one pattern, denoted M. This pattern will be
called the Mazur pattern.

For the sake of brevity, we omit discussion of ‘Z [%]fconcordance’ and ‘strong’ winding num-
ber +1. It suffices to know that there exist multiple infinite families of strong winding number +1
patterns, and that any winding number +1 pattern which is unknotted as a knot in S® is strong
winding number +1, such as the pattern shown in Figure [3] This particular pattern, denoted M,
is called the Mazur pattern, since it appears in Mazur’s first example of a contractible 4—manifold
with boundary not homeomorphic to S® [Maz61]. Knots modulo concordance in a possibly exotic
S3 x [0, 1] form the exotic knot concordance group, denoted CX.

The question of injectivity of satellite operators is important in the study of the set of concordance
classes of knots as a metric space in [CH14] where it was shown than winding number +1 satellite
operators are quasi-isometries. Theorem also provides strong evidence for a fractal structure
on C, conjectured in [CHLII]. We say a set has a fractal structure if there exist self-similarities
at arbitrarily small scales, following [BGN03, Definition 3.1]. Theorem m shows that each strong
winding number +1 satellite operator is a self-similarity for C*P as well as C®; I addressed the
question of scale in [Ray15b] via the following theorem.

Theorem 2.4 ([Ray15b]). There exist infinitely many strong winding number one patterns P (such
as the Mazur pattern in Figum@ and a large class of knots K such that the knots P(K) are distinct
in C** and C. That is, P"(K) # P?(K) in C and C**, for alli # j > 0.

The action of the Mazur pattern of Figure 3| on C** may be compared to the action of f(z) =
on the Cantor ternary set, in that iterations give distinct images of C** at smaller and smaller
scales. To complete the fractal analogy one must also address the question of surjectivity of strong
winding number +1 satellite operators, which we discuss in Section 2.4 below. One might also desire
some notion of a metric to bolster the claim that C has a fractal structure. Some metrics on C were

studied in [CHI14]. I am interested in studying other metrics on C in the future.

2.3. Distinct iterates of winding number one satellite operators. Theorem [2.4 has several
interesting applications. By choosing a topologically slice knot K, each pattern P in the theorem
yields an infinite family {P?(K)} of smooth (and exotic) concordance classes of topologically slice
knots. Several such examples already exist in the literature (see [End95l, [Gom86, [HK12, [Hom14];
ours are novel in the ease with which they are constructed and the added property that given any
two knots in a family, one is a satellite of the other. Theorem can also be used to construct
infinite families of links with linking number one and unknotted components, which are each distinct
from the class of the positive Hopf link. In a subsequent paper [DR15], Chris Davis and I used this
theorem to construct an infinite family of links topologically, but not smoothly, concordant to
the positive Hopf link; such examples were previous constructed by Cha-Kim-Ruberman—Strle
in [CKRS12] but we show that our examples are distinct from theirs.

Theorem is particularly interesting since it is generally hard to distinguish a knot K from
a winding number +1 satellite P(K) if P(U) is unknotted (or slice). In this case, the O-surgery
manifolds — obtained by performed 0-framed surgery on S? along the knot — are homology cobor-
dant and as a result K and P(K) have the same classical concordance invariants, such as the Arf
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invariant, the Levine—Tristram signatures, algebraic concordance invariants, etc. Theorem cir-
cumvents these by utilizing the slice-Bennequin inequality from contact geometry and more recent
smooth concordance invariants such as the 7 and s invariants (this strategy was first used in this
context in [CEHH13]). It is then interesting to ask whether these newer techniques can show that
such satellite knots are linearly independent in C where classical invariants fail. The following result
is in this vein.

Theorem 2.5 ([FR15]). There exist infinitely many topologically slice knots K such that for any
pattern P which can be changed to the trivial pattern by changing r positive crossings to negative
crossings, and 7(P(K)) = 7(K) +r, {K, P(K)} is linearly independent.

Despite the fact that strong winding number +1 satellite operators are injective (Theorem ,
they do not necessarily map linearly independent subsets of C to linearly independent subsets as
they are not in general homomorphisms. In the theorem below, we show that this does sometimes
occur (see [FRI5| for a more general statement).

Theorem 2.6 ([FR15]). Let { K}, be a family of knots with arbitrarily small first singularity of
the Upsilon function of [OSS14]. Let M denote the Mazur pattern shown in Figure @ Then there
is a subsequence { Ky, }7°_o such that {M(Ky,)};0_g is linearly independent.

Let T denote the group of smooth concordance classes of topologically slice knots. As a corollary
of the above theorem, we can infer that the image of the satellite operator M : 7 — 7T contains an
infinite rank family of topologically slice knots which form the basis of a free summand of 7 (cf.
the recent result of Adam Levine [Lev14] that M is not surjective on T).

2.4. The group of generalized patterns, and surjectivity of satellite operators. The set
of patterns has the structure of a monoid where the identity element is the trivial (winding number
one) pattern given by the core of a solid torus, and the classical satellite construction is given by a
monoid action. It is straightforward to see that patterns do not form a group [DR13, Proposition
2.1]. In [DR13], Chris Davis and I observe that the monoid of strong winding number +1 patterns
has a natural inclusion into the set of homology cylinders, which form a group under homology
cobordism. This group was introduced by Levine in [Lev0I]. We show that homology cobordism
classes of homology cylinders have a well-defined group action on the set of concordance classes of
knots in homology 3-spheres, and that this action restricts to the usual satellite operation on C*P
and C?*. In other words, we proved a theorem of the following type.

Theorem 2.7 ([DR13]). Let « = top or ex. Let C* denote the group of concordance classes of knots
in homology 3—spheres in the x—category. There is an obvious map ¥ : C* — C*. Let S denote the
monoid of strong winding number +1 patterns. There is a group S* consisting of homology cylinders
up to an appropriate notion of homology cobordism, and a monoid morphism E : S — S*. There is
an action of:S;; on C* which restricts to the classical satellite construction on C*, that is, for any
strong winding number +1 pattern P, the following diagram commutes.

o — e

{0

= B
- —— o

Since E(P) is an element of a group acting on (/3:, E(P): C* > C*isa bijection.

This leads to a number of interesting results. For example, we give a complete characterization
of patterns inducing surjective satellite operators [DR13, Proposition 3.2] and use this to show
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FIGURE 4. A family of patterns (m > 0) inducing non-trivial bijective satellite
operators on C*P and C®*. (The box represents 2m + 1 negative half-twists.)

that there exists an infinite family of strong winding number +1 patterns, distinct from connected-
sum patterns, which induce bijections on C*, such as those in Figure 4| [DR13 Corollary 3.7]
(compare with the result of Adam Levine [Lev14] that there exist strong winding number +1
satellite operators that are far from being surjective on C®*). For a large class of patterns P, we
are also able to explicitly draw patterns P such that P(P(K)) is concordant to K for each knot
K [DRI13 Theorem 3.4, Proposition 3.5]. We are also able to easily reprove Theorem via a
simple diagram chase.

We remark in passing that [DR13] also also proves analogues of Theorem for patterns with
other non-zero winding numbers—including patterns of winding number +1 which are not strong
winding number £1—but we omit them for brevity.

2.5. Shake slice and shake concordant knots. We have seen earlier that a knot K and its
satellite P(K) share a number of classical concordance invariants when P is a winding number
one pattern with P(U) slice. What is the equivalence relation generated by concordance as well as
setting K ~ P(K) for any winding number one pattern P with P(U) slice? In [CR15], Tim Cochran
and I show that this equivalence relation is the same as a natural generalization of concordance
which we call shake concordance. For any knot K, define an algebraically one collection to be a
collection of 2n+1 O—framed parallels of K, where n+1 of the parallels are oriented in the direction
of K and the n remaining parallels are oriented in the opposite direction, for some n > 0. Knots
Ky and K, are said to be shake concordant if there is a smooth, properly embedded, compact,
connected, genus zero surface A in S x [0, 1], where A N S3 x {0} is an algebraically one collection
of Koy and A N S x {1} is an algebraically one collection of K. This is clearly a generalization of
knot concordance. Moreover, this is a relative version of shake sliceness of knots, defined by Akbulut
in [Akb77]: a knot K is shake slice if an algebraically one collection of K bounds a smooth, properly
embedded, compact, connected genus zero surface in B%.

There are no known examples of knots that are shake slice but not slice. In [CR15] we give the
first examples of knots that are shake concordant but not concordant; there are infinitely many
examples, which can be chosen to be topologically slice. We also give a complete characterization
of shake concordance in terms of concordance and winding number one satellites, as follows.

Theorem 2.8 ([CR15]). Two knots K and J are shake concordant if and only if there exist winding
number one patterns P and Q with P(U) and Q(U) ribbon, such that P(K) is concordant to Q(J).

This yields the following corollary (compare Theorem .

Corollary 2.9 ([CR15]). The equivalence relation on the set of knots generated by concordance
together with the relation K ~ P(K) for all K and all winding number one patterns P with P(U)
ribbon is the same as the equivalence relation generated by shake concordance.
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We also give a characterization of shake slice knots in terms of winding number one satellites
and show the following.

Corollary 2.10 ([CR15]). There exists a shake slice knot that is not slice if and only if there exists
some winding number one satellite operator P : C — C with P(U) ribbon which fails to be weakly
mjective.

3. FILTRATIONS OF THE KNOT CONCORDANCE GROUP

The solvable filtration {F,}52, of C given in [COTO03] has been instrumental in the study of
(smooth and topological) knot concordance in recent years, particularly since the lower levels of the
filtration encapsulate the information one can obtain from several classical concordance invariants.
Part of the justification for the naturality of the solvable filtration is its close relationships with
several more geometric filtrations of C. For example, if a knot K bounds a grope of height n + 2,
or a Whitney tower of height n + 2, then K € F, [COTO03].

Cochran-Harvey—Horn [CHHI3| have recently introduced a new pair of filtrations of C, the
positive and negative filtrations: {P,}22, and {N,}72, respectively. These new filtrations are of
interest because (unlike the solvable filtration) they can be used to study smooth concordance
classes of topologically slice knots. In [Ray15a], I give geometric analogues for these new filtrations
in terms of Casson towers [Cas86, [Ere82], certain 4-dimensional objects built using disks with
transverse self-intersections (a schematic picture is given in Figure [5)).

FIGURE 5. Schematic diagram of a Casson tower of height three.

If a knot K bounds an immersed disk in B* with only positive (resp. negative) self-intersections,
K € Py (resp. K € Np). Thus, Casson towers—built using layers of immersed disks—are natural
objects to study in the context of the positive and negative filtrations. Let {G,}>°, denote the
grope filtration of C. In [Ray15a], I defined the filtrations {€,}7°,, {€F 122, {€ 122, {24122,
{Q; K heo: and {€5; 172, and established the following relationships.

Theorem 3.1 ([Rayl5a, Theorem A]). For any n >0,
(Z) Q:n+2 - gn+2 - -Fn;
(i1) €2.n C F,
(iii) €,y € €5, C P,
(iv) €y C €5, C Ny,

The second inclusion in part (i) was mentioned earlier [COT03, Theorem 8.11]; we include it
here for completeness.

In fact, we show that €3 C (| F,, and thus infer that either every knot in €3 is topologically
slice or there exist knots in (), which are not topologically slice. The only presently known
elements of [ F, are topologically slice and it is an open question whether all knots in () F, are
topologically slice. While any topologically slice knot K bounds an arbitrarily tall Casson tower,
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not all of them are even in Qﬁf For links of two or more components, each level of the positive and
negative filtrations is non-trivial [CP14]. Mirroring the fact that the positive and negative filtrations
non-trivially filter smooth concordance classes of topologically slice knots and links, it is expected
that the filtrations {Qin}%ozo will as well.

4. ONGOING AND FUTURE WORK

I have several ongoing projects within the programs mentioned above, as well as some planned
future work in different contexts.

Project 1. Linear independence of iterated winding number one satellites

We saw earlier that for a knot K, if P(K) is a winding number one satellite under a pattern P with
P(U) slice, then K and P(K) share several classical concordance invariants. I showed in [Ray15b]
that in some cases the iterated knots {P(K)} are distinct. I would like to investigate when such
a family of iterated satellites (possibly when K is topologically slice) is linearly independent in C.
This project is in collaboration with Peter Feller, and led to our work in [FR15]. At the moment
we are primarily investigating the Upsilon function of [OSS14] in this regard.

Project 2. Casson tower filtrations of C

Several open questions remain about the Casson tower filtrations of C mentioned in Section
In particular, I would like to investigate whether the {C;n};’f:o filtrations can distinguish between
smooth concordance classes of topologically slice knots as expected. There is also a need to find
examples of knots in arbitrarily deep levels of the filtrations. Once such examples have been found,
it would be interesting to ask how large the successive quotients of the filtrations are, e.g. does each
successive quotient contain a Z>°7

Project 3. Shake slice knots that are not slice

In [CRI5], Tim Cochran and I gave a characterization of shake slice knots in terms of winding
number one satellites , namely that a knot K is shake slice if and only if there exists a winding
number one pattern P with P(U) ribbon such that P(K) is slice. This suggests a novel approach to
the long-standing open question of whether there exist shake slice knots that are not slice [Kir97,
Problem 1.41(A)] (see Corollary [2.10).

Project 4. Structure in the double concordance group

A knot is called doubly slice if there exists a smooth unknotted 2-sphere ¥ in S* such that
¥ N S% = K. Similarly, K is topologically doubly slice if such a ¥ is merely topologically locally
flat. (If knotted 2-spheres are used, we recover the usual notion of slice and topologically slice
knots (or possibly links)). In [Meil5], Meier gave infinitely many examples of slice knots that are
topologically doubly slice but not smoothly doubly slice. Similar to how concordance can be defined
using slice knots, there is a notion of double concordance of knots, leading to a group called the
double concordance group, denoted Cp. In [Kim06], Kim gave a solvable bi-filtration of Cp, analogous
to the solvable filtration for C. In joint work with Peter Horn, we define a grope bi-filtration of Cp.
We will determine the relationship between the grope and solvable bi-filtrations. Subsequently, we
plan on defining analogues for the positive, negative, and bipolar filtrations for Cp. As in the case
for C we hope that these filtrations will distinguish between knots that are topologically, but not
smoothly, doubly slice.

Project 5. Embedded tori in contractible 4—manifolds

The classical loop theorem of Papakyriakopoulos [Pap57] states that if M is a 3—manifold and
there is a map f : (D?,0D?) — (M,dM) such that f|yp2 is not nullhomotopic in &M, then there
is an embedding with the same restriction on D?. In other words, an essential curve in M which
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extends to a map of a disk in M, extends to a embedding of a disk in M. This project asks whether
there is an analogue of this theorem for tori in 4-manifolds, as follows. Let X be a contractible
manifold with 0X = M. Then given any embedding of a torus 7" into M, the map can be extended
to a map from a solid torus. In joint work with Danny Ruberman, we are studying when we can
find an embedded solid torus in X bounded by T'. Additionally, we are interested in whether there
are examples where an embedding of a solid torus exists in the topological category but not in the
smooth category.

Project 6. Reversibility of knots in concordance

Given a knot K, its reverse, denoted 7K, is obtained by reversing the orientation of the knot. In
general it is hard to distinguish a knot from its reverse in concordance: most concordance invariants
do not see the knot orientation. Examples of knots not concordant to their reverse were given
in [Liv83l Nai96l [KT.99, Tam99, [HKL10, [CKL15] — in general, these showed that certain specific
knots are not concordant to their reverses by computating either Casson—Gordon invariants or
a twisted Alexander polynomial, as opposed to constructing infinite families of such knots. We
hope to construct such a family using Theorem which shows that if the (p,q)—cable of a

1

knot K is concordant to its reverse, then K is ‘Z E] —concordant’ to its reverse. Therefore, if

any of the above referenced examples of knots fail to be rationally concordant to their reverse,
then their cables form an infinite family of knots that fail to be concordant to their reverse. This
would require understanding whether the obstructions from Casson—Gordon invariants or twisted
Alexander polynomials also obstruct rational concordance, which is an interesting question in its
own right.

Project 7. The group of generalized patterns and its group action on knots in homology spheres

As we described in Section [2] recasting the classical satellite operation as a restriction of a group
acton has already yielded several interesting results, and we believe that further insights can be
gained from this perspective. Jointly with Chris Davis, we are continuing the study of generalized
patterns. This consists on one hand of investigating the group-theoretic properties of generalized
patterns (e.g. is the group abelian? does it have any torsion? do connected-sum operators form a
normal subgroup?) and on the other hand investigating the group action on concordance classes of
knots in homology spheres (e.g. is the action free? faithful?)
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