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Introduction Goal Casson towers Results

Definitions

Definition

A knot is slice if it bounds a smoothly embedded disk ∆ in B4.

K

S3

B4

∆

Knots, modulo slice knots, form the smooth knot concordance
group, denoted C.

There exist infinitely many smooth concordance classes of
topologically slice knots (Endo, Gompf, Hedden–Kirk,
Hedden–Livingston–Ruberman, Hom, etc.)
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• knots which bound disks in [[approximations of B4]]
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The n–solvable filtration of C

Definition (Cochran–Orr–Teichner, 2003)

For any n ≥ 0, a knot K is in Fn (and is said to be n–solvable) if
K bounds a smooth, embedded disk ∆ in [[an approximation of
B4]]
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The n–solvable filtration of C

Definition (Cochran–Orr–Teichner, 2003)

For any n ≥ 0, a knot K is in Fn (and is said to be n–solvable) if
K bounds a smooth, embedded disk ∆ in a smooth, compact,
oriented 4–manifold V with ∂V = S3 such that

• H1(V ) = 0,

• there exist surfaces {L1, D1, L2, D2, · · · , Lk, Dk} embedded
in V −∆ which generate H2(V ) and with respect to which

the intersection form is
⊕[

0 1
1 0

]
,

• π1(Li) ⊆ π1(V −∆)(n) for all i,

• π1(Di) ⊆ π1(V −∆)(n) for all i.
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For any n ≥ 0, a knot K is in Fn (and is said to be n–solvable) if
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• π1(Li) ⊆ π1(V −∆)(n) for all i,
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Clearly,
· · · ⊆ Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 ⊆ C
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The n–solvable filtration of C

• F0 = {K | Arf(K) = 0}
• F1 ⊆ {K | K is algebraically slice}
• F2 ⊆ {K | various Casson–Gordon obstructions vanish}

•
∀n, Z∞ ⊆ Fn/Fn+1
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The grope filtration of C

Definition

For any n ≥ 1, a knot K is in Gn if K bounds a grope of height n
in B4.

K
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The grope filtration of C

Model Theorem (Cochran–Orr–Teichner, 2003)

For all n ≥ 0,
Gn+2 ⊆ Fn



Introduction Goal Casson towers Results

Topologically slice knots

Let T denote the set of all topologically slice knots.

T ⊆
∞⋂
n=0

Fn

How can we use filtrations to study smooth concordance classes of
topologically slice knots?
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Positive and negative filtrations of C

Definition (Cochran–Harvey–Horn, 2012)

For any n ≥ 0, a knot K is in Pn (and is said to be n–positive) if
K bounds a smooth, embedded disk ∆ in [[an approximation of
B4]]

These filtrations can be used to distinguish smooth concordance
classes of topologically slice knots
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Positive and negative filtrations of C

Definition (Cochran–Harvey–Horn, 2012)

For any n ≥ 0, a knot K is in Pn (and is said to be n–positive) if
K bounds a smooth, embedded disk ∆ in a smooth, compact,
oriented 4–manifold V with ∂V = S3 such that

• π1(V ) = 0,

• there exist surfaces {Si} embedded in V −∆ which generate
H2(V ) and with respect to which the intersection form is⊕[

1
]
,

• π1(Si) ⊆ π1(V −∆)(n) for all i,

These filtrations can be used to distinguish smooth concordance
classes of topologically slice knots
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Positive and negative filtrations of C

Definition (Cochran–Harvey–Horn, 2012)

For any n ≥ 0, a knot K is in Nn (and is said to be n–negative) if
K bounds a smooth, embedded disk ∆ in a smooth, compact,
oriented 4–manifold V with ∂V = S3 such that

• π1(V ) = 0,

• there exist surfaces {Si} embedded in V −∆ which generate
H2(V ) and with respect to which the intersection form is⊕[
−1
]
,

• π1(Si) ⊆ π1(V −∆)(n) for all i,

These filtrations can be used to distinguish smooth concordance
classes of topologically slice knots
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Goal

Prove a version of the result relating the grope filtration and
n–solvable filtration, for the positive/negative filtrations
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Casson towers

Any knot bounds a kinky disk in B4, i.e. a disk with transverse
self-intersections.

Any knot which bounds such a kinky disk with only positive
self-intersections lies in P0.
A Casson tower is built using layers of kinky disks, so they are
natural objects to study in this context.
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Casson towers

K

A Casson tower of height
n consists of n layers of
kinky disks.

A Casson tower T is of
height (2, n) if it has two
layers of kinky disks, and
each member of a
standard set of generators
of π1(T ) is in
π1(B

4 − T )(n).
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Casson towers

Definition (R.)

• A knot is in Cn if it bounds a Casson tower of height n in B4

• A knot is in C+
n if it bounds a Casson tower of height n in B4

such that all the kinks at the initial disk are positive

• A knot is in C−n if it bounds a Casson tower of height n in B4

such that all the kinks at the initial disk are negative
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Results

Model Theorem (Cochran–Orr–Teichner, 2003)

For all n ≥ 0,
Gn+2 ⊆ Fn

Theorem (R.)

For all n ≥ 0,

• C+
n+2 ⊆ Pn

• C−n+2 ⊆ Nn

• C+
2, n ⊆ Pn

• C−2, n ⊆ Nn

• Cn+2 ⊆ Gn+2 ⊆ Fn

• C2, n ⊆ Fn
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Results

Proposition (R.)

For m–component links, let Cn(m), C2, n(m), Fn(m), Pn(m), and
Nn(m) denote the Casson tower, n–solvable, n–positive and
n–negative filtrations respectively. For all n and m ≥ 2n+2,

Z ⊆ Fn(m)/Cn+2(m)

Z ⊆ Pn(m)/C+
n+2(m)

Z ⊆ Nn(m)/C−n+2(m)

Z ⊆ Fn(m)/C2, n(m)

Z ⊆ Pn(m)/C+
2, n(m)

Z ⊆ Nn(m)/C−2, n(m)
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Results

Proposition (R.)

Let T denote the set of all topologically slice knots. Then

T ⊆
∞⋂
n=1

Gn
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