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Satellite operations on knots

P K P (K)

Figure: The satellite operation on knots

Any knot P in a solid torus gives a function on the set of knots.

P : K → K
K 7→ P (K)
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Knot concordance

Definition

Knots K0, K1 are concordant if they cobound a smoothly embedded
annulus in S3 × [0, 1]. Knots modulo concordance form the knot
concordance group C.

K0

S3 × {0}
S3 × [0, 1]

K1

A knot is slice if it is concordant to the unknot.
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Topological knot concordance

Definition

Knots K0, K1 are topologically concordant if they cobound a locally flat,
topologically embedded annulus in S3 × [0, 1]. Knots modulo topological
concordance form the topological knot concordance group Ctop.

K0

S3 × {0}
S3 × [0, 1]

K1

A knot is topologically slice if it is topologically concordant to the unknot.
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Exotic knot concordance

Definition

Knots K0, K1 are exotically concordant if they cobound a smoothly
embedded annulus in a smooth manifold M homeomorphic to S3 × [0, 1],
i.e. a possibly exotic S3 × [0, 1]. Knots modulo exotic concordance form
the exotic knot concordance group Cex.

K0

S3

M

K1

If the smooth 4–dimensional Poincaré Conjecture holds, then C = Cex.
A knot is exotically slice if it is exotically concordant to the unknot.
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Satellite operators on knot concordance

Any knot in a solid torus gives a well-defined map on knot concordance
classes, called a satellite operator. That is, we have the following
commutative diagram.

K K

C∗ C∗

P

P

for any ∗ ∈ {∅, top, ex}.
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How do satellite operators act on knot concordance?

K

Figure: The untwisted Whitehead double of a knot K

Long-standing conjecture: Wh(K) slice ⇒ K slice.
This can be restated as: what is the ‘kernel’ of Wh : C → C?
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Given a satellite operator P : C∗ → C∗,

1 is P ‘weakly injective’? That is, if P (K) = 0, is K = 0?

2 is P injective? That is, if P (K) = P (J), is K = J?

3 does P preserve linear independence? That is, if {Ki} is linearly
independent, is {P (Ki)}?

Note: Satellite operators are not generally homomorphisms.

5 is P surjective?

6 what are the ‘dynamics’?

7 any other question you might ask about functions.

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 8 / 28
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Connected-sum

Connected-sum is a satellite operation.

K

Figure: The pattern for connected-sum with the knot K

Connected-sum is both injective and surjective on any C∗.
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Previous results

Hedden (2007): if τ(K) > 0, then Whi(K) is not slice for any i ≥ 0.

Cochran–Harvey–Leidy (2011): large classes of ‘robust doubling operators’
(winding number zero) injectively map large infinite subgroup of C to an
independent set.

Hedden–Kirk (2012): the Whitehead doubling operator preserves the linear
independence of an infinite independent set of torus knots.
(later generalized by Juanita Pinzón-Caicedo)
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Injectivity of satellite operators

Theorem (Cochran–Davis–R.)

Any ‘strong winding number ±1’ satellite operator is injective on Ctop and
Cex.

Thus, modulo smooth 4DPC, any strong winding number ±1 satellite
operator is injective on C.

Corollary: if τ(K) 6= 0, then P i(K) is not slice for any winding number
±1 satellite operator P with P (U) slice, for any i ≥ 0.

(There are analogous results for other non-zero winding numbers w, in terms of
concordance in Z[ 1w ]–homology S3 × [0, 1]; in particular, any winding number ±1
satellite operator is injective on concordance classes in integral homology
S3 × [0, 1]. For brevity, we will not discuss this much more.)
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Strong winding number ±1

Figure: The Mazur pattern

Definition

A pattern P is ‘strong winding number ±1’ if the meridian of the solid
torus normally generates π1(S

3 − P (U)).

cf. P is winding number ±1 if the meridian of the solid torus generates
H1(S

3 − P (U)).

If P (U) is unknotted, strong winding number ±1 is the same as winding
number ±1.
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Proof of injectivity

First we prove weak injectivity for slice patterns.

Recall that a knot K is (topologically or exotically) slice if and only if the
zero surgery MK bounds a 4–manifold W where W is a homology circle
and the meridian of K normally generates π1(W ).

Lemma: If R is strong winding number ±1 with R(U) (topologically or
exotically) slice then MR(K) is homology cobordant to MK via a
4–manifold V where π1(V ) is normally generated by the meridian of K.
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Proof of injectivity

Now suppose that R(K) is slice, R(U) is slice, and R is strong winding
number ±1.

W

MR(K)

MR(K) MK

V

MR(K)

By the previous lemma, K is slice, and thus slice strong winding number
±1 satellite operators are weakly injective.
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Proof of injectivity

Now, suppose P (K) = P (J) (i.e. concordant in the relevant category),
where P is strong winding number ±1 (not necessarily slice).

Since K#−K is slice, J = K#−K#J , and thus,

P (J) = P (K#−K#J)

and so,
P (K) = P (K#−K#J)

and then,
−P (K)# [P (K#−K#J)] = 0

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 15 / 28
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Proof of injectivity

We know that −P (K)# [P (K#(−K#J))] is slice. This knot is shown
below.

P P

K

−K#J
K

P P
K

K

Note that this is a satellite with a ribbon pattern and companion −K#J .
The pattern is strong winding number one.

Thus, by weak injectivity for satellite operators with slice patterns, −K#J
is slice, and thus K = J .
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Satellite operators form a monoid

P Q P ? Q

Proposition

The satellite operation gives a monoid action on knots, i.e.

(P ? Q)(K) = P (Q(K))

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 17 / 28
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Patterns and homology cylinders

Given a pattern P in a solid torus ST, let E(P ) denote the complement
ST − P .

E(P ) is a 3–manifold with two toral boundary components, specifically a
homology cylinder.

Homology cylinders, modulo homology cobordism, form a group under
stacking (J. Levine).

Let Ŝ∗ be the group of the ‘strong’ homology cylinders under ‘strong’
homology cobordism.

There is a monoid homomorphism from the monoid of strong winding
number ±1 patterns to the group Ŝ∗.

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 18 / 28
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Homology cylinders act on knots in homology 3–spheres

Let V be a homology cylinder. Given a knot K in a homology 3–sphere Y ,
carve out N(K), a solid torus neighborhood of K.

Y −N(K)

∂N(K)

∂N(K)
∂−V ∂+V

VY −N(K) V

∂N(K) = ∂−V
∂+V

We obtain a 3–manifold with a single torus boundary component. We can
canonically glue in a solid torus to get a homology 3–sphere. The core of
this solid torus is the new knot.

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 19 / 28
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Generalizations of knot concordance

Let Ĉ∗ be the group of knots in homology spheres modulo concordance in
‘strong’ homology cobordisms.

There are injective homomorphisms C∗ ↪→ Ĉ∗.

(Davis–R.): Ŝ∗ acts on Ĉ∗ by a group action.
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Satellite operators as group actions

Theorem (Davis–R.)

For ∗ = ex or top, and any strong winding number one satellite operator
P , the following diagram commutes.

C∗ C∗

Ĉ∗ Ĉ∗

P

E(P )

Since Ŝ∗ gives a group action on Ĉ∗, each E(P ) ∈ Ŝ∗ acts via a bijection.
The Cochran–Davis–R. injectivity result for strong winding number ±1
satellite operators follows.
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Satellite operators as group actions

Thus, the classical satellite operation on C∗ is a restriction of a group
action on Ĉ∗.

Since E(P ) is an element of a group, it has an inverse E(P )−1.

P is surjective on C∗ if and only if E(P )−1(C∗) ⊆ C∗.

Theorem (Davis–R.)

Let P ⊆ ST = S1 ×D2 be winding number one. If the meridian of P is in
the normal subgroup of π1(E(P )) generated by the meridian of ST , then
P is strong winding number one and there exists a strong winding number
one pattern P such that E(P ) = E(P )−1 as homology cylinders.

In particular, P (P (K)) is (exotically or topologically) concordant to K for
any knot K.

Consequently, P : C∗ → C∗ is a bijection.

Arunima Ray (Brandeis) Satellite operations and fractals June 2, 2016 22 / 28



Background Questions Injectivity Surjectivity Other results Fractals

Satellite operators as group actions

Thus, the classical satellite operation on C∗ is a restriction of a group
action on Ĉ∗.
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Bijective satellite operators

For each m ≥ 0, the satellite operator Pm shown below has an inverse
satellite operator Pm which can be explicitly drawn, i.e. Pm(Pm(K)) is
concordant to K for any knot K. Moreover, each Pm : C∗ → C∗ is
bijective and Pm is distinct from all connected-sum operators in Ŝ∗.

2m + 1

2m + 1 =
2m+ 1 half-twists

· · ·

Note that it is still possible that, for some fixed knot J , Pm(K) = J#K for all
K, i.e. it is not known whether patterns act faithfully.
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Non-surjectivity of satellite operators

Figure: The Mazur pattern

In contrast, recall from yesterday that the Mazur satellite operator is
non-surjective on C (A. Levine).
In particular, Levine showed that no knot J with ε(J) = −1 is in the
image of the Mazur satellite operator.

Note that it is not known whether the Mazur satellite operator is the identity
function on Ctop.
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Other results

K. Park: Wh(T2,2m+1) and Wh2(T2,2m+1) generate a Z⊕ Z summand of
the subgroup of topologically slice knots in C.

R. : For several classes of strong winding number ±1 patterns P
(including the Mazur pattern) and infinitely many knots K,
P i(K) 6= P j(K) in Cex for any i 6= j ≥ 0.
(For the Mazur pattern, this can be improved by A. Levine’s computation of
τ–invariants.)

Feller–J. Park–R. : Let M be the Mazur satellite operator. There exists an
infinite family of topologically slice knots {Ki} such that for all r ≥ 0,
{M r(Ki)} generates a subgroup of C of infinite rank.
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Fractals

Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of injective functions from the set to smaller and
smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran–Harvey–Leidy, 2011)

The knot concordance group C is a fractal.
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The knot concordance group has fractal properties

Figure: The Mazur pattern M

Cochran–Davis–R. : M is injective on Cex and Ctop.

A. Levine: M is not surjective on C. Moreover,

Im(M) ) Im(M2) ) Im(M3) ) · · ·

What about scale?
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The knot concordance group has fractal properties

To properly address the question of scale we need some notion of distance
on C∗. This was started by Cochran–Harvey, with further work by
Cochran–Harvey–Powell (see talk on Saturday).
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