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Examples of knots
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Mathematical knots

OZ0BC

Take a piece of string, tie a knot in it, glue the two ends together.

Definition
A (mathematical) knot is a closed curve in space with no self-intersections.
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Examples of knots

Figure: Knots in circular DNA.

(Images from Cozzarelli, Sumners, Cozzarelli, respectively.)
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The origins of mathematical knot theory

1880's: The ather hypothesis. Lord Kelvin (1824-1907) hypothesized that
atoms were ‘knotted vortices’ in ther.
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The origins of mathematical knot theory
1880's: The ather hypothesis. Lord Kelvin (1824-1907) hypothesized that

atoms were ‘knotted vortices’ in ather. This led Peter Tait (1831-1901)
to start tabulating knots.
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Tait thought he was making a periodic table!
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The origins of mathematical knot theory

1880's: The ather hypothesis. Lord Kelvin (1824-1907) hypothesized that
atoms were ‘knotted vortices’ in ather. This led Peter Tait (1831-1901)
to start tabulating knots.
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Tait thought he was making a periodic table! This view was held for about
20 years (until the Michelson—Morley experiment).
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Nowadays knot theory is a subset of the field of topology.

Any 3—-dimensional ‘manifold’ can be obtained from R3 by performing an
operation called ‘surgery’ on a collection of knots.
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Modern knot theory

Nowadays knot theory is a subset of the field of topology.

Theorem (Lickorish—Wallace, 1960s)

Any 3-dimensional ‘manifold’ can be obtained from R?® by performing an
operation called ‘surgery’ on a collection of knots.

Modern knot theory has applications to algebraic geometry, statistical
mechanics, DNA topology, quantum computing, . ...
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@ How can we tell if two knots are equivalent?



@ How can we tell if two knots are equivalent?

Figure: These are all pictures of the same knot!
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Big questions in knot theory

@ How can we tell if two knots are equivalent?
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9

Figure: These are all pictures of the same knot!
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Big questions in knot theory

@ How can we tell if two knots are equivalent?

1

9

Figure: These are all pictures of the same knot!

|

® How can we tell if two knots are distinct?
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Big questions in knot theory

@ How can we tell if two knots are equivalent?

1

9

Figure: These are all pictures of the same knot!

|

® How can we tell if two knots are distinct?
© Can we quantify the 'knottedness’ of a knot?
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Surfaces are classified by their genus.

\A A4

genus= 0 genus= 1 genus= 2




Surfaces are classified by their genus.

\A A4

genus= 0 genus= 1 genus= 2

The genus of a knot K, denoted g(K), is the least genus of surfaces
bounded by K.




If K and J are equivalent knots, then g(K) = g(J).




If K and J are equivalent knots, then g(K) = g(J). I

A knot is the unknot if and only if it is the boundary of a disk.

That is, K is the unknot if and only if g(K) = 0.



If K and J are equivalent knots, then g(K) = g(J). I
A knot is the unknot if and only if it is the boundary of a disk. I

That is, K is the unknot if and only if g(K) = 0.

If T is the trefoil knot, g(T') = 1. Therefore, the trefoil is not equivalent
to the unknot.
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Figure: The connected sum of two trefoil knots, T#T
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Figure: The connected sum of two trefoil knots, T#T

Given two knots K and J, g(K#J) = g(K) + g(J).
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Figure: The connected sum of two trefoil knots, T#T

Given two knots K and J, g(K#J) = g(K) + g(J).

Therefore, g(T# - #T) =n
————

n copies
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Connected sum of knots
Figure: The connected sum of two trefoil knots, T#T

Proposition

Given two knots K and J, g(K#J) = g(K) + g(J). ’
Therefore, g(T#---#T) =n

v
n copies
Corollary: There exist infinitely many distinct knots!
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Connected sum of knots

Figure: The connected sum of two trefoil knots, T#T

Proposition
Given two knots K and J, g(K#J) = g(K) + g(J). ’

Therefore, g(T#---#T) =n
———

n copies
Corollary: There exist infinitely many distinct knots!
Corollary: We can never add together non-trivial knots to get a trivial knot.
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Recall that a knot is equivalent to the unknot if and only if it is the
boundary of a disk in R3.

A knot K is slice if it is the boundary of a disk in R? x [0, 00).

w

Figure: Schematic picture of the unknot



Recall that a knot is equivalent to the unknot if and only if it is the
boundary of a disk in R3.

A knot K is slice if it is the boundary of a disk in R? x [0, 00).
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Figure: Schematic picture of the unknot



Recall that a knot is equivalent to the unknot if and only if it is the
boundary of a disk in R3.

A knot K is slice if it is the boundary of a disk in R? x [0, 00).
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Figure: Schematic picture of the unknot and a slice knot
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Knots of this form are called ribbon knots.
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Examples of slice knots

CAQ//

Knots of this form are called ribbon knots.
Knots, modulo slice knots, form a group called the knot concordance
group, denoted C.
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Fractals

Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of injective functions from the set to smaller and
smaller subsets (in particular, the functions are non-surjective).
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Fractals

Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of injective functions from the set to smaller and
smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran—Harvey—Leidy, 2011)

The knot concordance group C is a fractal.
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Satellite operations on knots
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Figure: The satellite operation on knots

Any knot P in a solid torus gives a function on the knot concordance
group,
P:C—>C
K — P(K)

These functions are called satellite operators.
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Large (infinite) classes of satellite operators P : C — C are injective. I




Large (infinite) classes of satellite operators P : C — C are injective. I

There are infinitely many satellite operators P and a large class of knots
K such that P{(K) # PI(K) for all i # j.
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The knot concordance group has fractal properties

Theorem (Cochran—Davis-R., 2012)

Large (infinite) classes of satellite operators P : C — C are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots
K such that P{(K) # PJ(K) for all i # j.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on C.
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The knot concordance group has fractal properties
Theorem (Cochran—Davis-R., 2012)
Large (infinite) classes of satellite operators P : C — C are injective.

Theorem (R., 2013)

There are infinitely many satellite operators P and a large class of knots
K such that P{(K) # PJ(K) for all i # j.

Theorem (Davis-R., 2013)

There exist satellite operators that are bijective on C.

Theorem (A. Levine, 2014)

There exist satellite operators that are injective but not surjective.
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Fractals

What is left to show?

In order for C to be a fractal, we need some notion of distance, to see that
we have smaller and smaller embeddings of C within itself.

That is, we need to exhibit a metric space structure on C. There are
several natural metrics on C, but we have not yet found one that works
well with the current results on satellite operators. The search is on!
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