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1910: stated by Dehn
1929: error found in Dehn’s proof by Kneser
1957: correct proof given by Papakyriakopoulos
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Goal

Question

Is there an analogue of Dehn’s lemma in four dimensions?

Possibility 1: Consider embedded circles in the boundary of 4-manifolds.

That is, if an embedded circle in the boundary of a 4—manifold is
nullhomotopic in the interior, does it bound an embedded disk?
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This is a question about slice knots, which are widely studied.
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Is there an analogue of Dehn'’s lemma in four dimensions? '

Possibility 2: Consider codimension one submanifolds of the boundary of
4—manifolds, e.g. spheres or tori.
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Moreover, we can ask whether these embeddings exist smoothly or merely
topologically (i.e. locally flat).
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For embedded spheres/tori in the boundary of 4—manifolds, Dehn's lemma

@ does not hold in general
@ holds under certain broad hypotheses
© sometimes holds topologically but not smoothly




There exists a sphere S C OW* where W is smooth and simply connected
and S is nullhomotopic in W, but S does not bound a topological ball
in W.




Results for spheres

Theorem (R.—Ruberman)

There exists a sphere S C OW* where W is smooth and simply connected

and S is nullhomotopic in W, but S does not bound a topological ball
inW.

Theorem (R.—Ruberman)

IfY =Y #5Ys = OW* where Ys is an integer homology sphere, w (W) is
“good”, and m1(Ya) — w1 (W) is the trivial map, then S bounds a
topologically embedded ball in W .
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IfY =Y #5Ys = OW* where Ys is an integer homology sphere, w (W) is
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Results for spheres

Corollary (R.—Ruberman)

Any sphere S CY = OW* where Y is an integer homology sphere and
71 (W) is abelian bounds a topologically embedded ball in W

Theorem (R.—Ruberman)

There exists a sphere S CY = OW* with W smooth and simply
connected and Y an integer homology sphere such that S bounds a
topologically embedded ball in W but no smooth ball in W'.
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Results for spheres

Corollary (R.—Ruberman)

Any sphere S CY = OW* where Y is an integer homology sphere and
71 (W) is abelian bounds a topologically embedded ball in W

Theorem (R.—Ruberman)

There exists a sphere S CY = OW* with W smooth and simply
connected and Y an integer homology sphere such that S bounds a
topologically embedded ball in W but no smooth ball in W'.

Example: Let P be the Poincaré homology sphere with a disk removed
and ~y a curve that normally generates 71 (P). Let W be the 4—-manifold
obtained from P x [0, 1] by doing surgery along 7 pushed into the interior.
Then OW = —P+#P, where the connected-sum is performed along a
sphere S.
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There exists an incompressible torus T’ CY = OW* where W is
contractible such that T' extends to a map of the solid torus to W, but
does not bound an embedded solid torus in W .




Results for tori

Theorem (R.—Ruberman)

There exists an incompressible torus T CY = OW* where W is
contractible such that T' extends to a map of the solid torus to W, but
does not bound an embedded solid torus in W.

Proposition (R.—Ruberman)

Let T CY = OW be a separating torus, v C T a simple closed curve, and
e the surface induced framing. If

© ~ is non-trivial in Hy(T),
@ ~ is smoothly (resp. topologically) slice in W with respect to e, and
© the surgered manifold Y (v) is irreducible,

then T bounds a smoothly (resp. topologically) embedded solid torus in
w.
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Results for tori

Theorem (R.—Ruberman)

There exists a contractible W and an incompressible torus T CY = 0W

such that T extends to a topological embedding of a solid torus in W, but
not a smooth embedding.

Here J is the right-handed trefoil and K is the positive untwisted
Whitehead double of the right-handed trefoil.
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