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A 4—dimensional equivalence relation on knots

S3 % [0,1]

Definition

Two knots K and J are said to be concordant if they cobound a
a properly embedded smooth annulus in S% x [0, 1].
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The knot concordance group

Definition

Knots
concordance

C is a group under the connected-sum operation and is called the
knot concordance group.

BRTX

The identity element in C is the class of the unknot. That is, the
class of knots which bound smoothly embedded disks in B4, called
slice knots.

Let C =
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of knots form the knot concordance group, denoted C.
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Definition

Two knots are topologically concordant if they cobound a
topologically embedded annulus in a manifold homeomorphic to
S$3 x [0, 1]. Topological concordance classes of knots form the
topological knot concordance group, denoted C*™P.
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Variants of the knot concordance group

Definition

Two knots are concordant if they cobound a smoothly embedded
annulus in a manifold diffeomorphic to S* x [0, 1]. Concordance classes
of knots form the knot concordance group, denoted C.

Definition

Two knots are topologically concordant if they cobound a
topologically embedded annulus in a manifold homeomorphic to
S$3 x [0, 1]. Topological concordance classes of knots form the
topological knot concordance group, denoted C*™P.

Definition

Two knots are exotically concordant if they cobound a smoothly
embedded annulus in a smooth manifold homeomorphic to S3 x [0, 1].
Exotic concordance classes of knots form the topological knot
concordance group, denoted C**.

If the 4—dimensional (smooth) Poincaré Conjecture is true, C = C®.
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The satellite construction

Definition
A satellite operator, or pattern, is a knot inside a solid torus,
considered upto isotopy within the solid torus.

Definition

The winding number of a pattern is the signed count of its
intersections with a meridional disk of the solid torus.
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P, the pattern K, a knot in S3

Figure : The satellite operation on knots in S3.
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Figure : The satellite operation on knots in S3.
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P, the pattern K, a knot in S3 , the satellite knot

Figure : The satellite operation on knots in S3.

Any satellite operator P gives a function P : C — C.
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Strong winding number one operators

P

Consider P in S3 instead of the solid torus. Call this P.

Definition

If 7, the meridian of the solid torus, normally generates 1 (S3\ P),
then P is said to have strong winding number one.
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Strong winding number one operators

P

Consider P in S3 instead of the solid torus. Call this P.

Definition

If 7, the meridian of the solid torus, normally generates 1 (S3\ P),
then P is said to have strong winding number one.

For a P such that P is unknotted, P is strong winding number one
if and only if it is winding number one.



The satellite construction
000®0

Injectivity of satellite operators

Theorem (Cochran—Davis-R.,'12)

If P is a strong winding number one pattern, then

P :C" — C™ and P : C*™ — C&
are injective. That is, for any two knots K and J,

P(K)=P(J) & K=J
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Injectivity of satellite operators

Theorem (Cochran—Davis-R.,'12)

If P is a strong winding number one pattern, then

P :C" — C™ and P : C*™ — C&
are injective. That is, for any two knots K and J,
P(K)=P(J)&K=J

If the 4—dimensional Poincaré Conjecture is true, P :C — C is
injective.
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A fractal can be defined as a set which ‘exhibits self-similarity on
many scales’.
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Is C a fractal?

A fractal can be defined as a set which ‘exhibits self-similarity on
many scales’.

Each strong winding number one satellite operator gives a
‘self-similarity’ of C*P and C®* (and maybe even of C).

How many strong winding number one operators are there?
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Theorem (R.)

There is a strong winding number one satellite operator P and a
large family of knots K such that P{(K) = P(P(---(P(K))--))
are all distinct in C®* and C. That is, P'(K) # PJ(K) for all i # j.

Therefore, each P! gives a distinct function on the smooth knot
concordance group.
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Main theorem

Theorem (R.)

There is a strong winding number one satellite operator P and a
large family of knots K such that P{(K) = P(P(---(P(K))--))
are all distinct in C®* and C. That is, P'(K) # PJ(K) for all i # j.

Therefore, each P! gives a distinct function on the smooth knot
concordance group.

Each P! is strong winding number one. So we have infinitely many
self-similarities of C&*. B

We can choose K to be topologically slice and P to be unknotted,
in which case the set {P*(K)} is an infinite family of topologically
slice knots that are distinct in smooth concordance.
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Ozsvath—Szabé defined the 7—invariant of a knot. This gives
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T—invariant of knots

Ozsvath—Szabé defined the 7—invariant of a knot. This gives
homomorphisms 7 : C — Z and 7 : C** — Z.

\

Proposition (Ozsvath—Szabd)

Start with a knot K. If K_ is the knot obtained by changing a
single positive crossing of K, then

r(Ky) - 1< T(K-) < m(K})

\




Composition of patterns

Figure : The monoid operation on patterns.

P(Q(K)) = (P *Q)(K)
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vertical tangencies wherein all crossings are of the following type:

X
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rot(K) = %(#down cusps — #up cusps)
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Classical invariants for Legendrian patterns

tb(P) =2 and rot(P) =0



Tools
00000e00

The Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with
tb(K) = 0.
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The Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with
tb(K) = 0. We can obtain the satellite knot P(K) by taking
parallels of K and then inserting the pattern.



Tools
000000e0

Legendrian patterns and Legendrian satellites

Proposition (Ng)
th(P(K)) = th(P) + w(P)?*th(K)
rot(P(K)) = rot(P) + w(P)rot(K)




Legendrian patterns and Legendrian satellites

Proposition (Ng)
th(P(K)) = tb(P) + w(P)*tb(K)
rot(P(K)) = rot(P) + w(P)rot(K)

Proposition

th(P % Q) = tb(P) + w(P)*th(Q)

rot(P * Q) = rot(P) + w(P)rot(Q)
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The slice-Bennequin inequality

Slice-Bennequin inequality (Rudolph)

For any knot K, we have that

tb(K) + |rot(K)| < 27(K) — 1
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Proposition (Cochran—Franklin-Hedden—Horn)

For any knot K with tb(K) =0, rot(K) = 27(K) — 1 and
T7(K) >0, P(K) # K in C (and therefore, in C).

Note: There are large families of such knots K.
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Proposition (Cochran—Franklin-Hedden—Horn)

For any knot K with tb(K) =0, rot(K) = 27(K) — 1 and
T7(K) >0, P(K) # K in C (and therefore, in C).

Note: There are large families of such knots K.

Proof: tb(P(K)) = tb(P) + tb(K) =0 and

rot(P(K)) = rot(P) +rot(K) =2+ (27(K) — 1) = 27(K) + 1
But tb(P(K)) + |rot(P(K))| < 27(P(K)) — 1
So0+27(K)+1<27(P(K))—1=7(K)+1<7(P(K))

= P(K)# K O
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Proof

Proposition (R.)
PYK) # K for anyi >0 in C (and therefore, in C*).

Proof:

tb(P?) = tb(P)+tb(P)

rot(P?) = rot(P)+rot(P)

Figure : The operator P>
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tb(P") = 0 and rot(P?) = 2i
tb(P'(K)) = 0 and rot(P(K)) = 27(K) — 1 + 2i

By the slice-Bennequin inequality, we have that

tb(P*(K)) + [rot(P'(K))| < 2r(PY(K)) — 1
0+ |27(K) — 14 2i| < 27r(PY(K)) — 1

Therefore, 7(K) +i < 7(P(K)) and P{(K) # K for i > 0. O
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Theorem (R.)

PY(K) # PI(K) for any i # j in C (and therefore, in C™).
Additionally, T(PY(K)) = 7(K) +i for all i > 0

Proof: We can change P!(K) to P'~!(K) by changing a single
positive crossing to a negative crossing. Therefore, we know that

(PN (K)) < 7(P(K)) < 7(PTHK)) +1

Therefore,
r(PU(K)) < (P (K)) +1 < (P (K)) +2 < -

<7(K)+1.

= 7(PY(K)) = 7(K) +i forall i >0
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