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Let C = Knots
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C is a group under the connected-sum operation and is called the
knot concordance group.

The identity element in C is the class of the unknot. That is, the
class of knots which bound smoothly embedded disks in B4, called
slice knots.
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Variants of the knot concordance group

Definition

Two knots are concordant if they cobound a smoothly embedded
annulus in a manifold diffeomorphic to S3 × [0, 1]. Concordance classes
of knots form the knot concordance group, denoted C.

Definition

Two knots are topologically concordant if they cobound a
topologically embedded annulus in a manifold homeomorphic to
S3 × [0, 1]. Topological concordance classes of knots form the
topological knot concordance group, denoted Ctop.

Definition

Two knots are exotically concordant if they cobound a smoothly
embedded annulus in a smooth manifold homeomorphic to S3 × [0, 1].
Exotic concordance classes of knots form the topological knot
concordance group, denoted Cex.

If the 4–dimensional (smooth) Poincaré Conjecture is true, C = Cex.
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The satellite construction
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A satellite operator, or pattern, is a knot inside a solid torus,
considered upto isotopy within the solid torus.

Definition

The winding number of a pattern is the signed count of its
intersections with a meridional disk of the solid torus.
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The satellite construction

P , the pattern K, a knot in S3

P (K), the satellite knot

Figure : The satellite operation on knots in S3.

Remark

Any satellite operator P gives a function P : C → C.
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Strong winding number one operators

P

η

P̃

Consider P in S3 instead of the solid torus. Call this P̃ .

Definition

If η, the meridian of the solid torus, normally generates π1(S
3\P̃ ),

then P is said to have strong winding number one.

For a P such that P̃ is unknotted, P is strong winding number one
if and only if it is winding number one.
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Injectivity of satellite operators

Theorem (Cochran–Davis–R.,’12)

If P is a strong winding number one pattern, then

P : Ctop → Ctop and P : Cex → Cex

are injective. That is, for any two knots K and J ,

P (K) = P (J)⇔ K = J

If the 4–dimensional Poincaré Conjecture is true, P : C → C is
injective.
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Is C a fractal?

A fractal can be defined as a set which ‘exhibits self-similarity on
many scales’.

Each strong winding number one satellite operator gives a
‘self-similarity’ of Ctop and Cex (and maybe even of C).

Question

How many strong winding number one operators are there?
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Main theorem

Theorem (R.)

There is a strong winding number one satellite operator P and a
large family of knots K such that P i(K) = P (P (· · · (P (K)) · · · ))
are all distinct in Cex and C. That is, P i(K) 6= P j(K) for all i 6= j.

Therefore, each P i gives a distinct function on the smooth knot
concordance group.

Each P i is strong winding number one. So we have infinitely many
self-similarities of Cex.
We can choose K to be topologically slice and P̃ to be unknotted,
in which case the set {P i(K)} is an infinite family of topologically
slice knots that are distinct in smooth concordance.
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τ–invariant of knots

Definition

Ozsváth–Szabó defined the τ–invariant of a knot. This gives
homomorphisms τ : C → Z and τ : Cex → Z.

Proposition (Ozsváth–Szabó)

Start with a knot K+. If K− is the knot obtained by changing a
single positive crossing of K+, then

τ(K+)− 1 ≤ τ(K−) ≤ τ(K+)
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Composition of patterns

* =

Figure : The monoid operation on patterns.

Fact

P (Q(K)) = (P ∗Q)(K)
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Legendrian front diagrams

Every knot has a Legendrian front diagram, i.e. a diagram with no
vertical tangencies wherein all crossings are of the following type:
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Classical invariants of Legendrian knots

tb(K) = (#positive crossings −#negative crossings)− 1
2#cusps

rot(K) = 1
2(#down cusps−#up cusps)

tb(K) = (3− 0)− 1
2(4) = 1, rot(K) = 1

2(2− 2) = 0
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Classical invariants for Legendrian patterns

tb(P ) = 2 and rot(P ) = 0
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The Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with
tb(K) = 0.

We can obtain the satellite knot P (K) by taking
parallels of K and then inserting the pattern.
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Legendrian patterns and Legendrian satellites

Proposition (Ng)

tb(P (K)) = tb(P ) + w(P )2tb(K)

rot(P (K)) = rot(P ) + w(P )rot(K)

Proposition

tb(P ∗Q) = tb(P ) + w(P )2tb(Q)

rot(P ∗Q) = rot(P ) + w(P )rot(Q)
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The slice–Bennequin inequality

Slice–Bennequin inequality (Rudolph)

For any knot K, we have that

tb(K) + |rot(K)| ≤ 2τ(K)− 1
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Proof

tb(P ) = 0 and rot(P ) = 2

Proposition (Cochran–Franklin–Hedden–Horn)

For any knot K with tb(K) = 0, rot(K) = 2τ(K)− 1 and
τ(K) > 0, P (K) 6= K in C (and therefore, in Cex).

Note: There are large families of such knots K.

Proof: tb(P (K)) = tb(P ) + tb(K) = 0 and
rot(P (K)) = rot(P ) + rot(K) = 2 + (2τ(K)− 1) = 2τ(K) + 1
But tb(P (K)) + |rot(P (K))| ≤ 2τ(P (K))− 1
So 0 + 2τ(K) + 1 ≤ 2τ(P (K))− 1⇒ τ(K) + 1 ≤ τ(P (K))
⇒ P (K) 6= K
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Proof

Proposition (R.)

P i(K) 6= K for any i > 0 in C (and therefore, in Cex).

Proof:

Figure : The operator P 2

tb(P 2) = tb(P )+tb(P )

rot(P 2) = rot(P )+rot(P )
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Proof

tb(P i) = 0 and rot(P i) = 2i

tb(P i(K)) = 0 and rot(P i(K)) = 2τ(K)− 1 + 2i

By the slice–Bennequin inequality, we have that

tb(P i(K)) + |rot(P i(K))| ≤ 2τ(P i(K))− 1

0 + |2τ(K)− 1 + 2i| ≤ 2τ(P i(K))− 1

Therefore, τ(K) + i ≤ τ(P i(K)) and P i(K) 6= K for i > 0.
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Proof

Theorem (R.)

P i(K) 6= P j(K) for any i 6= j in C (and therefore, in Cex).
Additionally, τ(P i(K)) = τ(K) + i for all i ≥ 0

Proof: We can change P i(K) to P i−1(K) by changing a single
positive crossing to a negative crossing. Therefore, we know that

τ(P i−1(K)) ≤ τ(P i(K)) ≤ τ(P i−1(K)) + 1

Therefore,
τ(P i(K)) ≤ τ(P i−1(K))+ 1 ≤ τ(P i−2(K))+ 2 ≤ · · · ≤ τ(K)+ i.

⇒ τ(P i(K)) = τ(K) + i for all i > 0
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