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Locally flat surfaces in 4-manifolds 

Theorem [Lee-Wilczynski]: Let M be a closed, simply connected 4-manifold. 
Then every primitive        H  (M; Z) is represented by a locally flat embedded torus. 

Talk 1:

Theorem [Freedman-Quinn]: Let K    S  be a knot with Alexander polynomial one.
Then K is topologically slice.

Talk 2 (next week):

-

XE
L

&

3
C



Locally flat surfaces in 4-manifolds 

Definition: Let M be a 4-manifold and      a surface. An embedding f:        M is said 
to be locally flat if     x        , there exists U   f(x) with (U, U    f(  ))     (R , R ) 
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Generic immersions 

Definition: Let M be a 4-manifold and      a surface. A map f:        M is said to be a 
generic immersion if it is a locally flat embedding except at isolated, transverse double 
point singularities, i.e. points with neighbourhoods U, such that (U, U    f(   ))   

(R , R     R   )

Then we write f:        M.
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Fundamental tools 

Theorem [Freedman-Quinn]: Every continuous map           M is homotopic to a 
generic immersion. 

Theorem [Quinn]: Every locally flat submanifold of M has a (linear) normal bundle.

Theorem [Quinn]: Let      ,       denote locally flat submanifolds of M. Then there is an 
ambient isotopy of M taking     to     such that     and      intersect transversely. 
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Visualising locally flat embeddings/generic immersions

R3x-E R3xu RXE



Visualising locally flat embeddings/generic immersions

R3x-E R3xu RXE



Visualising locally flat embeddings/generic immersions

R3x-E R3xu RXE
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Visualising locally flat embeddings/generic immersions
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Visualising the Clifford torus := S    x S    xy zw
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Fundamental tool: disc embedding theorem 
Theorem [Freedman]: Let M be a simply connected 4-manifold. 
Let f: D     M and g: S      M be generic immersions such that: 

(i) g has trivial normal bundle; 
(ii) g has trivial self-intersection, g.g =0;
(iii) f and g are algebraically dual, f.g =1. 

Then there exists f   f and g    g such that 
(i) f is a locally flat embedding, and 
(ii) f and g are geometrically dual, f   g is a single, transverse double point. 

D  M

N.b. There was a typo on this slide during the actual talk! 
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Proof of the theorem 
Theorem [Lee-Wilczynski]: Let M be a closed, simply connected 4-manifold. 
Then every primitive        H  (M; Z) is represented by a locally flat embedded torus. 

Proof:
Step 1: Represent    by a generic immersion f: S       M 
with a geometrically dual sphere g: S      M.

   (M) = 1             (M) = H  (M; Z) 
                     there exists f: S      M with [f] =   
By Poincare duality, there exists      H (M; Z) with           = 1
As before, there exists g: S      M with [g] =     
Geometric Casson lemma: up to homotopy, can assume f and g are 
geometrically dual. 
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Proof of the theorem 
Step 2: Arrange that the signed count of 
self-intersections of f is zero

Interior twisting
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Proof of the theorem 
Step 3: Pair up self-intersections of f with 
generically immersed Whitney discs {W }·
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Proof of the theorem 
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Proof of the theorem 
Problem Solution Cost

W     W Disc embedding theorem None if all else solved

tw(  W )
Interior twisting tw(  W )     tw(  W ) + 2

|W    W |       |W    W | + 1

Boundary twisting

 W       W Boundary pushoff 

W    f

Tubing into g
|W     f |       |W     f | - 1
tw(  W )     tw(  W ) + e(  g)
|W     W | uncontrolled

Transfer move |W     f |      |W     f | + 1
|W     f |      |W     f | + 1

tw(  W )     tw(  W ) + 1
|W    f |       |W    f | + 1
|  W      W |       |  W      W | - 1
|W    f |       |W    f | + 1
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Proof of the theorem 
Claim: If all self-intersections of f are paired by untwisted, generically immersed 
Whitney discs with embedded, disjoint boundaries and interiors disjoint from f, then 
can find locally flat embedded Whitney discs and do the Whitney move.
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Proof of the theorem 
Claim: If all self-intersections of f are paired by untwisted, generically immersed 
Whitney discs with embedded, disjoint boundaries and interiors disjoint from f, then 
can find locally flat embedded Whitney discs and do the Whitney move.
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embedding 
theorem

g &
↳·gg go

I I I



Proof of the theorem 
Claim: If all self-intersections of f are paired by untwisted, generically immersed 
Whitney discs with embedded, disjoint boundaries and interiors disjoint from f, then 
can find locally flat embedded Whitney discs and do the Whitney move.
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Proof of the theorem 
Problem Solution Cost

W     W Disc embedding theorem None if all else solved

tw(  W )
Interior twisting

Boundary twisting

 W       W Boundary pushoff 

W    f

Tubing into g

Transfer move
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Proof of the theorem 
Problem Solution Cost

W     W Disc embedding theorem None if all else solved

tw(  W )
Interior twisting tw(  W )     tw(  W ) + 2

|W    W |       |W    W | + 1

Boundary twisting

 W       W Boundary pushoff 
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Tubing into g
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Geometric manoeuvres 

Boundary twisting
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Geometric manoeuvres 

Boundary pushoff
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Geometric manoeuvres 
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Proof of the theorem 
Problem Solution Cost
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Returning to proof of the theorem 
Step 4: Use geometric manoeuvres to ensure {W } are untwisted and have embedded, 
disjoint boundaries, and moreover {W     f} has at most one point. 

Boundary 
pushoff

{  W } embedded, 
disjoint Interior twisting

tw(   W ) = 0 or 1 
for each i

Boundary twisting

tw(   W ) = 0 for each iW     f even for all but 
possibly one i, say i = 0 Transfer move

Tube all W  with i = 0 into g

tw(   W ) even for all i = 0
Interior twisting

{W }      untwisted, 
embedded, disjoint 
boundaries, interiors 
disjoint from f
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Returning to proof of the theorem 
Step 5: If {W } untwisted, with embedded disjoint boundaries, and interior disjoint 
from f, for all i, proceed to next step. 

If not: stabilise to add genus and do the band-fibre finger move twice.  

Stabilise Find two annuli

Band-fibre 
finger move
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Returning to proof of the theorem 
Step 5: If {W } untwisted, with embedded disjoint boundaries, and interior disjoint 
from f, for all i, proceed to next step. 

If not: stabilise to add genus and do the band-fibre finger move twice.  

Two new Whitney discs 
V  and V , with   V     V 
a single point Boundary 

pushoff
Transfer move, 

tube into g, 
interior twist

{W } untwisted, with embedded disjoint 
boundaries, and interior disjoint from f, for all i.
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Returning to proof of the theorem 
Step 6: Use Clifford tori to get algebraically dual spheres for {W }, apply the disc 
embedding theorem to find locally flat embedded Whitney discs, and do the Whitney move. 

Disc 
embedding 
theorem

Clifford tori

Whitney move
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Locally flat surfaces in 4-manifolds 

Theorem [Lee-Wilczynski]: Let M be a closed, simply connected 4-manifold. 
Then every primitive        H  (M; Z) is represented by a locally flat embedded torus. 

Talk 1:

Theorem [Freedman-Quinn]: Let K    S  be a knot with Alexander polynomial one.
Then K is topologically slice.

Talk 2 (next week):
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Geometric Casson lemma
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Constructing locally flat 
surfaces in 4-manifolds 

Moscow-Beijing topology seminar
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Locally flat surfaces in 4-manifolds 

Theorem [Lee-Wilczynski]: Let M be a closed, simply connected 4-manifold. 
Then every primitive        H  (M; Z) is represented by a locally flat embedded torus. 

Talk 1 (last week):

Theorem [Freedman-Quinn]: Let K    S  be a knot with Alexander polynomial one.
Then K is topologically slice.

Talk 2 (today):
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Topologically slice knots

Definition [Fox-Milnor]: A knot K     S  is said to be topologically slice if it bounds a 
locally flat disc in B , i.e. S          S

D          B
locally flat
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Locally flat surfaces in 4-manifolds 

Definition: Let M be a 4-manifold and      a surface. An embedding f:        M is said 
to be locally flat if     x        , there exists U   f(x) with (U, U    f(  ))     (R , R ) 
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Fundamental tools 

Theorem [Freedman-Quinn]: Every continuous map           M is homotopic to a 
generic immersion. 

Theorem [Quinn]: Every locally flat submanifold of M has a (linear) normal bundle.

Theorem [Quinn]: Let      ,       denote locally flat submanifolds of M. Then there is an 
ambient isotopy of M taking     to     such that     and      intersect transversely. 
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Topologically slice knots

Definition [Fox-Milnor]: A knot K     S  is said to be topologically slice if it bounds a 
locally flat disc in B , i.e. S          S

D          Blocally flat

D x D
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Topologically slice knots

Definition [Fox-Milnor]: A knot K     S  is said to be topologically slice if it bounds a 
locally flat disc in B , i.e. S          S

D          Blocally flat

D x D

Check: 
  (B  \νΔ) = S  (K)
0-framed Dehn surgery on K
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0-surgery characterisation of topological sliceness

Theorem: A knot K    S  is topologically slice if and only if
S (K) =   W where W is a compact, connected topological 4-manifold such that
(i) Z = H (S (K; Z)         H (W; Z);
(ii) π W is normally generated by the meridian µ    S (K); and 
(iii) H (W; Z) = 0.
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0-surgery characterisation of topological sliceness

Theorem: A knot K    S  is topologically slice if and only if
S (K) =   W where W is a compact, connected topological 4-manifold such that
(i) Z = H (S (K; Z)         H (W; Z);
(ii) π W is normally generated by the meridian µ    S (K); and 
(iii) H (W; Z) = 0. Proof of “if” direction: 

 - Given W glue on D x D 
along µ 
- Identify resulting manifold 
as B
- Identify 0 x D  as 
topological slice disc for K
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Alexander polynomial one knots

Proposition/definition: A knot K    S  has Alexander polynomial one if and only if 
                                                H (S (K); Z[Z]) = 0

Note: H (S (K); Z) = Z so S (K) has an infinite cyclic cover S (K).

By definition, as an abelian group H (S (K); Z[Z]) is simply H (S (K); Z). 
Remembering the action of Z makes this a Z[Z]-module. 
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Equivariant intersection numbers

Definition: Let M be a closed, oriented, connected 4-manifold with a base point       M. 
Define λ   : π (M) x π (M)         Ζ[π M] as follows. 

λ  (f,g) =   Σ   ε  . γ     Z[π M]  
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Equivariant self-intersection numbers

Definition: Let M be a closed, oriented, connected 4-manifold with a base point       M. 
Define µ   : π (M)         Ζ[π M]      as follows. 

µ  (f) =   Σ   ε  . γ     Z[π M]  
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Fundamental tool: sphere embedding theorem 
Theorem [Freedman-Quinn]: Let M be a connected 4-manifold. 
Suppose that π (M) is “good”, e.g. finite, abelian, solvable, …. 
Let f: S     M and g: S      M be generic immersions such that: 

(i) g has trivial normal bundle; 
(ii) µ  (f) =0; and 
(iii) f and g are algebraically dual, λ  (f,g) =1. 

Then there exist f   f and g    g such that 
(i) f is a locally flat embedding, and 
(ii) f and g are geometrically dual, f   g is a single, transverse double point. 

When π (Μ) = 1, outcome (ii) is due to Powell-R.-Teichner.
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Proof of the theorem
Theorem [Freedman-Quinn]: Let K    S  be a knot with Alexander polynomial one. 
Then K is topologically slice. 

Proof sketch: 
Since H (S  (K); Z) = Z<µ  >, there is a map f: S  (K)       S, such that the induced 
map on fundamental groups sends [µ  ]      1. 

Goal: Build a compact, connected 4-manifold W such that S  (K)        S

W
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

V

Input: Ω    (S ) = Z

(S  (K),    )    Arf(K) =0

Recall: Elements of Ω    (S ) are (Y,   ,f: Y     S ) 
where    is a spin structure on the closed 3-manifold Y, 
and (Y ,   ,f ) ~ (Y ,    ,f ) if there exists a compact 
4-manifold Z with a spin structure    such that 
  (Z,  ) = (Y ,   )     (Y ,    )  and (Y ,    )

(Z,    )              S

(Y ,    )
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

V

Note: F is not a homotopy equivalence. 
In the rest of the proof we will upgrade F (and V) until we get a homotopy equivalence.

Recall: if F : π V       π (S ) is an isomorphism for all i, then F is a homotopy equivalence 
by Whitehead’s theorem.

For us, by Poincaré-Lefschetz duality, it will be enough to arrange for F  to be an 
isomorphism for i = 0,1,2. 
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

V

Step 2: Arrange for F  to be an isomorphism on π 
By construction, F  is already a surjection on π 
To make it an injection as well, perform surgery on circles

Given γ in the kernel of F  replace V by V \ νγ     (S  x D  )

Note: νγ = S x D , so we have   νγ =   (S x D  ). 
There are two choices of gluing map. Use the one so that the result is still spin.

3 + 1

2)
=

* T

* T

* ....
~ 3 2 2

G J



Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

VStep 2: Arrange for F  to be an isomorphism on π 

Since K has Alexander polynomial one, i.e. H  (S (K); Z[Z]) = 0, 
the equivariant intersection form λ  : π (V) x π (V)       Ζ[Z] is non-singular

Step 3: Replace V with some V  with hyperbolic intersection form 

Consider (π (V), λ  , µ  )     L  (Ζ[Z]), the L-group of nonsingular quadratic forms 

Recall: π (V) = H (V; Z[Z]) since π (V) = Z. 
By surgery on circles we can assume π (V) is a free Z[Z]-module
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

VStep 2: Arrange for F  to be an isomorphism on π 

Fact: L (Z[Z]) = 8Z given by the signature

Step 3: Replace V with some V  with hyperbolic intersection form 

Consider (π (V), λ  , µ  )     L  (Ζ[Z]), the L-group of nonsingular quadratic forms 

Theorem [Freedman]: There exists a closed, spin, simply connected 4-manifold E8 
with intersection form the E8 form with signature 8. 

So if (π (V), λ  , µ  ) = 8n    8Z = L  (Ζ[Z]), replace V with V = V # -nE8.
Note V  is spin, and (π (V ), λ   , µ  ) = 0    8Z = L  (Ζ[Z])
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

VStep 2: Arrange for F  to be an isomorphism on π 

Step 3: Replace V with some V  with hyperbolic intersection form 

(π (V ), λ   , µ  ) = 0    8Z = L  (Ζ[Z]),
so by definition,  (π (V ), λ   , µ  ) is (stably) hyperbolic 

In the simplest case, this means π (V ) has a basis of generic immersions {f,g : S    V }
such that 
(i) f,g have trivial normal bundle (since V  is spin);
(ii) µ  (f) = 0; and 
(iii) λ   (f,g) = 1.
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

VStep 2: Arrange for F  to be an isomorphism on π 

Step 3: Replace V with some V  with hyperbolic intersection form 

Step 4: Realise half a basis of π (V ) with locally flat, pairwise disjoint, embedded 2-
spheres {f , …, f  }, equipped with geometrically dual (generically immersed) spheres

Sphere
embedding
theorem
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Proof of the theorem
Step 1: Build compact, connected, spin 4-manifold V such that S  (K)        S

VStep 2: Arrange for F  to be an isomorphism on π 

Step 3: Replace V with some V  with hyperbolic intersection form 

Step 4: Realise half a basis of π (V ) with locally flat, pairwise disjoint, embedded 2-
spheres {f , …, f  }, equipped with geometrically dual (generically immersed) spheres

Step 5: Perform surgery on V  along {f , …, f  } and call the result W
i.e. for each i, replace V  by V  \ νf       (S x D )

Check that W satisfies S  (K)        S

W
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Locally flat surfaces in 4-manifolds 

Theorem [Lee-Wilczynski]: Let M be a closed, simply connected 4-manifold. 
Then every primitive        H  (M; Z) is represented by a locally flat embedded torus. 

Talk 1 (last week):

Theorem [Freedman-Quinn]: Let K    S  be a knot with Alexander polynomial one.
Then K is topologically slice.

Talk 2 (today):
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