Moscow-Beijing topology seminar June 18, 2025

Constructing locally flat surfaces in 4-manifolds

Locally flat surfaces in 4-manifolds

Talk I:

Theorem [Lee-Wilczyński]: Let M be a closed, simply connected 4-manifold. Then every primitive $\& \in H_2(M; \mathbb{Z})$ is represented by a locally flat embedded torus.

Talk 2 (next week):

Theorem [Freedman-Quinn]: Let $K \subseteq S^3$ be a knot with Alexander polynomial one. Then K is topologically slice.

Locally flat surfaces in 4-manifolds

Definition: Let M be a 4-manifold and Σ a surface. An embedding f: $\Sigma \hookrightarrow M$ is said to be locally flat if $\forall x \in \Sigma$, there exists $U \ni f(x)$ with $(U, U \cap f(\Sigma)) \approx (\mathbb{R}^4, \mathbb{R}^2)$

Generic immersions

Definition: Let M be a 4-manifold and Σ a surface. A map $f: \Sigma \to M$ is said to be a generic immersion if it is a locally flat embedding except at isolated, transverse double point singularities, i.e. points with neighbourhoods U, such that $(U, U \cap f(\Sigma)) \approx (\mathbb{R}^4, \mathbb{R}^2_{\times V} \cup \mathbb{R}^2_{\times V})$

Then we write $f: \Sigma \rightarrow M$.

Fundamental tools

Theorem [Freedman-Quinn]: Every continuous map $\Sigma \rightarrow M$ is homotopic to a generic immersion.

Theorem [Quinn]: Every locally flat submanifold of M has a (linear) normal bundle.

Theorem [Quinn]: Let Σ_1, Σ_2 denote locally flat submanifolds of M. Then there is an ambient isotopy of M taking Σ_1 to Σ_1 such that Σ_1 and Σ_2 intersect transversely.

Visualising the Clifford torus := $S_{xy}^1 \times S_{zw}^1$

Fundamental tool: disc embedding theorem

Theorem [Freedman]: Let M be a simply connected 4-manifold. Let f: $D^2 \rightarrow M$ and g: $S^2 \rightarrow M$ be generic immersions such that: $\int_{J} \int_{J} \int_{J} J$ $\partial D^2 \rightarrow \partial M$

(i) g has trivial normal bundle;
(ii) g has trivial self-intersection, g.g =O;
(iii) f and g are algebraically dual, f.g =1.

Then there exists $\overline{f} \simeq f$ and $\overline{g} \simeq g$ such that $\frac{f}{2}$ (1) \overline{f} is a locally flat embedding, and (ii) \overline{f} and \overline{g} are geometrically dual, $\overline{f} \cap \overline{g}$ is a single, transverse double point.

Theorem [Lee-Wilczyński]: Let M be a closed, simply connected 4-manifold. Then every primitive $\& \in H_2(M; \mathbb{Z})$ is represented by a locally flat embedded torus.

Proof:

Step I: Represent \sim by a generic immersion f: $S^2 \rightarrow M$ with a geometrically dual sphere g: $S^2 \rightarrow M$.

$$\pi_{1}(M) = 1 \implies \pi_{2}(M) \cong H_{2}(M; \mathbb{Z})$$

$$\implies \text{there exists f: } S^{2} \Longrightarrow M \text{ with } [f] = \infty$$
By Poincaré duality, there exists $\beta \in H_{2}(M; \mathbb{Z})$ with $\infty \cdot \beta = 1$
As before, there exists $g: S^{2} \Longrightarrow M$ with $[g] = \beta$
Geometric Casson lemma: up to homotopy, can assume f and g are geometrically dual.

Step 2: Arrange that the signed count of self-intersections of f is zero

Interior twisting

Step 3: Pair up self-intersections of f with generically immersed Whitney discs $\{W_i\}$

Step 3: Pair up self-intersections of f with generically immersed Whitney discs $\{W_i\}$

Step 3: Pair up self-intersections of f with generically immersed Whitney discs $\{W_i\}$

Dream

Reality

Problem	Solution	Cost
Ŵ: ሐ Ŵ;	Disc embedding theorem	None if all else solved
tw(∂W²)	Interior twisting	$tw(\partial W_{i}) \rightarrow tw(\partial W_{i}) \pm 2$ $ \tilde{W}_{i} \wedge \tilde{W}_{i} \longrightarrow \tilde{W}_{i} \wedge \tilde{W}_{i} + 1$
	Boundary twisting	tw(∂Wĉ) → tw(∂Wĉ) ± 1 Ŵĉ₼f → Ŵċ₼f + 1
ЭМ [;]	Boundary pushoff	∂W;₼∂W; → ∂W;₼∂W; - Ŵ;₼f → Ŵ;₼f +
°. ₩°.th	Tubing into g	$\begin{split} \ \hat{W}_{i} \wedge f \ \longrightarrow \ \hat{W}_{i} \wedge f \ - 1 \\ tw(\partial W_{i}) \longrightarrow tw(\partial W_{i}) + e(\nu g) \\ \ \hat{W}_{i} \wedge \hat{W}_{j} \ \text{ uncontrolled} \end{split}$
	Transfer move	lเพื _{่ะ} ₼ f l → lเพื _{่ะ} ₼ f l + l liพื _{่ะ} ₼ f l → liŴ _s ₼ f l + l

Problem	Solution	Cost
Ŵ: ħ Ŵ;	Disc embedding theorem	None if all else solved
tw(ƏW;)	Interior twisting	
	Boundary twisting	
ЭМ; 4 9Mî	Boundary pushoff	
ሡ፝፞ኯt	Tubing into g	
	Transfer move	

Problem	Solution	Cost
Ŵ: ሐ Ŵ;	Disc embedding theorem	None if all else solved
tw(ƏW;)	Interior twisting	$tw(\partial W_{i}) \rightarrow tw(\partial W_{i}) \pm 2$ $ \tilde{W}_{i} \wedge \tilde{W}_{i} \longrightarrow \tilde{W}_{i} \wedge \tilde{W}_{i} + 1$
	Boundary twisting	
ЭМ; 4 9Mî	Boundary pushoff	
ሡ፝፝፝፝፝፝፝፝፝፞፞	Tubing into g	
	Transfer move	

•

Boundary pushoff

•

Tubing

•

Problem	Solution	Cost
Ŵ: ሐ Ŵ;	Disc embedding theorem	None if all else solved
tw(∂W²)	Interior twisting	$tw(\partial W_{i}) \rightarrow tw(\partial W_{i}) \pm 2$ $ \tilde{W}_{i} \wedge \tilde{W}_{i} \longrightarrow \tilde{W}_{i} \wedge \tilde{W}_{i} + 1$
	Boundary twisting	tw(∂Wĉ) → tw(∂Wĉ) ± 1 Ŵĉ₼f → Ŵċ₼f + 1
ЭМ [;]	Boundary pushoff	∂W;₼∂W; → ∂W;₼∂W; - Ŵ;₼f → Ŵ;₼f +
°. ₩°.th	Tubing into g	$\begin{split} \ \hat{W}_{i} \wedge f \ \longrightarrow \ \hat{W}_{i} \wedge f \ - 1 \\ tw(\partial W_{i}) \longrightarrow tw(\partial W_{i}) + e(\nu g) \\ \ \hat{W}_{i} \wedge \hat{W}_{j} \ \text{ uncontrolled} \end{split}$
	Transfer move	lเพื _{่ะ} ₼ f l → lเพื _{่ะ} ₼ f l + l liพื _{่ะ} ₼ f l → liŴ _s ₼ f l + l

Step 4: Use geometric manoeuvres to ensure $\{W_i^{*}\}$ are untwisted and have embedded, disjoint boundaries, and moreover $\{W_i^{*} \land f\}$ has at most one point.

Step 5: If $\{W_i\}$ untwisted, with embedded disjoint boundaries, and interior disjoint from f, for all i, proceed to next step.

If not: stabilise to add genus and do the band-fibre finger move twice.

Step 5: If $\{W_i^*\}$ untwisted, with embedded disjoint boundaries, and interior disjoint from f, for all i, proceed to next step.

If not: stabilise to add genus and do the band-fibre finger move twice.

{W;} untwisted, with embedded disjoint boundaries, and interior disjoint from f, for all i.

Step 6: Use Clifford tori to get algebraically dual spheres for $\{W_t\}$, apply the disc embedding theorem to find locally flat embedded Whitney discs, and do the Whitney move.

Locally flat surfaces in 4-manifolds

Talk I:

Theorem [Lee-Wilczyński]: Let M be a closed, simply connected 4-manifold. Then every primitive $\& \in H_2(M; \mathbb{Z})$ is represented by a locally flat embedded torus.

Talk 2 (next week):

Theorem [Freedman-Quinn]: Let $K \subseteq S^3$ be a knot with Alexander polynomial one. Then K is topologically slice.

Geometric Casson lemma

Moscow-Beijing topology seminar June 25, 2025

Constructing locally flat surfaces in 4-manifolds

Locally flat surfaces in 4-manifolds

Talk I (last week):

Theorem [Lee-Wilczyński]: Let M be a closed, simply connected 4-manifold. Then every primitive $\& \in H_2(M; \mathbb{Z})$ is represented by a locally flat embedded torus.

Talk 2 (today):

Theorem [Freedman-Quinn]: Let $K \subseteq S^3$ be a knot with Alexander polynomial one. Then K is topologically slice.

Topologically slice knots

Definition [Fox-Milnor]: A knot $K \subseteq S^3$ is said to be topologically slice if it bounds a locally flat disc in B⁴, i.e. $S^1 \xrightarrow{\kappa} S^3$ locally flat X 3

Locally flat surfaces in 4-manifolds

Definition: Let M be a 4-manifold and Σ a surface. An embedding f: $\Sigma \hookrightarrow M$ is said to be locally flat if $\forall x \in \Sigma$, there exists $U \ni f(x)$ with $(U, U \cap f(\Sigma)) \approx (\mathbb{R}^4, \mathbb{R}^2)$

Fundamental tools

Theorem [Freedman-Quinn]: Every continuous map $\Sigma \rightarrow M$ is homotopic to a generic immersion.

Theorem [Quinn]: Every locally flat submanifold of M has a (linear) normal bundle.

Theorem [Quinn]: Let Σ_1, Σ_2 denote locally flat submanifolds of M. Then there is an ambient isotopy of M taking Σ_1 to Σ_1 such that Σ_1 and Σ_2 intersect transversely.

Topologically slice knots

Topologically slice knots

O-surgery characterisation of topological sliceness

Theorem: A knot $K \subseteq S^3$ is topologically slice if and only if $S_0^3(K) = \partial W$ where W is a compact, connected topological 4-manifold such that (i) $Z \cong H_1(S_0^3(K; Z) \xrightarrow{L_*} H_1(W; Z);$

(ii) $\pi_1 W$ is normally generated by the meridian $\mu_k \in S_0(K)$; and (iii) $H_2(W; \mathbb{Z}) = O$.

O-surgery characterisation of topological sliceness

Theorem: A knot $K \subseteq S^3$ is topologically slice if and only if $S_0^3(K) = \partial W$ where W is a compact, connected topological 4-manifold such that (i) $Z \cong H_1(S_0^3(K; Z) \xrightarrow{L_*} H_1(W; Z);$ (ii) $\pi_1 W$ is normally generated by the meridian $\mu_{\mathbf{k}} \in S_0^3(K)$; and (iii) $H_2(W; Z) = O.$

 $W = \int_{0}^{1} K \int_{0}^{3} (K)$

Proof of "if" direction: - Given W glue on $D^2 \times D^2$ along μ_{k} - Identify resulting manifold as B^4 - Identify $O \times D^2$ as topological slice disc for K

Alexander polynomial one knots

Proposition/definition: A knot $K \subseteq S^3$ has Alexander polynomial one if and only if $H_1(S^3_0(K); \mathbb{Z}[\mathbb{Z}]) = O$

Note: $H_1(S_0^{3}(K); \mathbb{Z}) \cong \mathbb{Z}$ so $S_0^{3}(K)$ has an infinite cyclic cover $S_0^{3}(K)$.

By definition, as an abelian group $H_1(S^3_0(K); \mathbb{Z}[\mathbb{Z}])$ is simply $H_1(S^3_0(K); \mathbb{Z})$. Remembering the action of \mathbb{Z} makes this a $\mathbb{Z}[\mathbb{Z}]$ -module.

Equivariant intersection numbers

Definition: Let M be a closed, oriented, connected 4-manifold with a base point $* \in M$. Define $\lambda_{\mathbf{M}} : \pi_{\mathbf{2}}(M) \times \pi_{\mathbf{2}}(M) \longrightarrow \mathbb{P}[\pi_{\mathbf{1}}M]$ as follows.

Equivariant self-intersection numbers

Definition: Let M be a closed, oriented, connected 4-manifold with a base point $* \in M$. Define $\mu_{M}: \pi_{2}(M) \longrightarrow \mathbb{Z}[\pi_{1}M] / \mathbb{Z}$ as follows.

Fundamental tool: sphere embedding theorem

Theorem [Freedman-Quinn]: Let M be a connected 4-manifold. Suppose that $\pi_{I}(M)$ is "good", e.g. finite, abelian, solvable, Let f: S² \rightarrow M and g: S² \rightarrow M be generic immersions such that:

(i) g has trivial normal bundle; (ii) $\mu_{M}(f) = O$; and (iii) f and g are algebraically dual, $\lambda_{M}(f,g) = 1$.

Then there exist $\overline{f} \simeq f$ and $\overline{g} \simeq g$ such that (i) \overline{f} is a locally flat embedding, and (ii) \overline{f} and \overline{g} are geometrically dual, $\overline{f} \cap \overline{g}$ is a single, transverse double point.

When $\pi_1(M) \neq 1$, outcome (ii) is due to Powell-R.-Teichner.

Theorem [Freedman-Quinn]: Let $K \subseteq S^3$ be a knot with Alexander polynomial one. Then K is topologically slice.

Proof sketch:

Since $H_1(S^3_o(K); \mathbb{Z}) \cong \mathbb{Z} < \mu_{\kappa} >$, there is a map $f: S^3_o(K) \longrightarrow S^1$, such that the induced map on fundamental groups sends $[\mu_{\kappa}] \longrightarrow I$.

Goal: Build a compact, connected 4-manifold W such that $S_0^3(K) \xrightarrow{f} S_1^1$

Step I: Build compact, connected, spin 4-manifold V such that $S^{3}_{o}(K) \xrightarrow{f} S^{1}_{V}$

Input:
$$\Omega_3^{spin}(S^1) \cong \mathbb{Z}_2$$

 Ψ
 $(S_0^3(K), 5) \mapsto Arf(K) = 0$

Recall: Elements of $\Omega_3^{\text{spin}}(S^1)$ are $(Y, 5, f: Y \rightarrow S^1)$ where 5 is a spin structure on the closed 3-manifold Y, and $(Y_0, 5_0, f_0) \sim (Y_1, 5_1, f_1)$ if there exists a compact 4-manifold Z with a spin structure t such that $\partial(Z,t) = (Y_0, S_0) \sqcup (Y_1, S_1) \text{ and } (Y_0, S_0)$ $(2, t) \xrightarrow{\exists F}$

Step I: Build compact, connected, spin 4-manifold V such that $S^{3}_{o}(K) \xrightarrow{f} S^{1}_{V}$

Note: F is not a homotopy equivalence. In the rest of the proof we will upgrade F (and V) until we get a homotopy equivalence.

Recall: if $F_*: \pi_i V \longrightarrow \pi_i(S^1)$ is an isomorphism for all i, then F is a homotopy equivalence by Whitehead's theorem.

For us, by Poincaré-Lefschetz duality, it will be enough to arrange for F_* to be an isomorphism for i = 0,1,2.

Step I: Build compact, connected, spin 4-manifold V such that $S^{3}_{o}(K) \xrightarrow{f} S^{1}_{V}$

Step 2: Arrange for F_* to be an isomorphism on π_1

By construction, F_{\star} is already a surjection on π_{1} To make it an injection as well, perform surgery on circles

Given \mathcal{J} in the kernel of $\mathcal{F}_{\mathbf{x}}$ replace V by $V \setminus \mathcal{V}_{\mathbf{y}} \cup (\mathcal{S}^2 \times \mathcal{D}^2)$

Note: $v_{\mathcal{J}} \cong \mathcal{S}^1 \times \mathcal{D}^3$, so we have $\partial v_{\mathcal{J}} = \partial (\mathcal{S}^2 \times \mathcal{D}^2)$.

There are two choices of gluing map. Use the one so that the result is still spin.

Step I: Build compact, connected, spin 4-manifold V such that $S_{\circ}^{3}(K) \xrightarrow{f} S^{1}$ Step 2: Arrange for F_{*} to be an isomorphism on π_{1}

Step 3: Replace V with some V' with hyperbolic intersection form

Consider $(\pi_2(V), \lambda_v, \mu_v) \in L_4(\mathbb{Z}[\mathbb{Z}])$, the L-group of nonsingular quadratic forms

Recall: $\pi_2(V) = H_2(V; \mathbb{Z}[\mathbb{Z}])$ since $\pi_1(V) \cong \mathbb{Z}$. By surgery on circles we can assume $\pi_2(V)$ is a free $\mathbb{Z}[\mathbb{Z}]$ -module Since K has Alexander polynomial one, i.e. $H_1(S_0^3(K); \mathbb{Z}[\mathbb{Z}]) = O$,

the equivariant intersection form $\lambda_{\mathbf{v}}: \pi_{\mathbf{z}}(V) \times \pi_{\mathbf{z}}(V) \longrightarrow \mathbb{Z}[\mathbb{Z}]$ is non-singular

Step I: Build compact, connected, spin 4-manifold V such that $S_{o}^{3}(K) \xrightarrow{f} S^{1}$ Step 2: Arrange for F_{*} to be an isomorphism on π_{1}

Step 3: Replace V with some V' with hyperbolic intersection form

Consider $(\pi_2(V), \lambda_v, \mu_v) \in L_4(\mathbb{Z}[\mathbb{Z}])$, the L-group of nonsingular quadratic forms

Fact: $L_4(\mathbb{Z}[\mathbb{Z}]) \cong 8\mathbb{Z}$ given by the signature

Theorem [Freedman]: There exists a closed, spin, simply connected 4-manifold E8 with intersection form the E8 form with signature 8.

So if $(\pi_2(V), \lambda_V, \mu_V) = 8n \in 8\mathbb{Z} = L_4(\mathbb{Z}[\mathbb{Z}])$, replace V with V'= V # -nE8. Note V' is spin, and $(\pi_2(V'), \lambda_{V'}, \mu_{V'}) = 0 \in 8\mathbb{Z} \cong L_4(\mathbb{Z}[\mathbb{Z}])$

Step I: Build compact, connected, spin 4-manifold V such that $S^{3}_{o}(K) \xrightarrow{f} S^{1}$ Step 2: Arrange for F_{*} to be an isomorphism on π_{1}

Step 3: Replace V with some V' with hyperbolic intersection form

 $\begin{array}{l} (\pi_{\mathbf{1}}(\mathsf{V}'),\,\lambda_{\mathbf{V}'},\,\mu_{\mathbf{V}'}) = \mathcal{O} \in \mathscr{BZ} \cong \mathsf{L}_{\mathbf{4}}(\mathscr{Z}[\mathscr{Z}]),\\ \text{so by definition, } (\pi_{\mathbf{1}}(\mathsf{V}'),\,\lambda_{\mathbf{V}'},\,\mu_{\mathbf{V}'}) \text{ is (stably) hyperbolic} \end{array}$

In the simplest case, this means $\pi_2(V')$ has a basis of generic immersions {f,g : $S \to V$ } such that

(i) f,g have trivial normal bundle (since V' is spin); (ii) $\mu_{v'}(f) = O$; and (iii) $\lambda_{v'}(f,g) = 1$.

Step I: Build compact, connected, spin 4-manifold V such that $S_{o}^{3}(K) \xrightarrow{f} S^{1}$ Step 2: Arrange for F_{*} to be an isomorphism on π_{1}

Step 3: Replace V with some V' with hyperbolic intersection form

Step 4: Realise half a basis of $\pi_{1}(V')$ with locally flat, pairwise disjoint, embedded 2-spheres { $\overline{f_{1}}$, ..., $\overline{f_{n}}$ }, equipped with geometrically dual (generically immersed) spheres

Step I: Build compact, connected, spin 4-manifold V such that $S_{o}^{3}(K) \xrightarrow{f} S^{1}$ Step 2: Arrange for F_{*} to be an isomorphism on π_{1}

Step 3: Replace V with some V' with hyperbolic intersection form

Step 4: Realise half a basis of $\pi_2(V')$ with locally flat, pairwise disjoint, embedded 2spheres $\{\overline{f_1}, ..., \overline{f_n}\}$, equipped with geometrically dual (generically immersed) spheres Step 5: Perform surgery on V'along $\{\overline{f_1}, ..., \overline{f_n}\}$ and call the result W i.e. for each i, replace V'by V'\ $v \overline{f_i} \cup (S^1 \times D^3)$ Check that W satisfies $S_0^3(K) \xrightarrow{f} S_1^1$ $a_1 \xrightarrow{r} 1$

Locally flat surfaces in 4-manifolds

Talk I (last week):

Theorem [Lee-Wilczyński]: Let M be a closed, simply connected 4-manifold. Then every primitive $\& \in H_2(M; \mathbb{Z})$ is represented by a locally flat embedded torus.

Talk 2 (today):

Theorem [Freedman-Quinn]: Let $K \subseteq S^3$ be a knot with Alexander polynomial one. Then K is topologically slice.