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Constructing locally flat
eurfaceg in 4-manifoldg



Locally flat eurfaceg in 4-manifolds

Talk [:

Theorem [Lee-Wilezyhskil: Let M be a cloged, simply connected 4-manifold.
Then every primitive b & H, (M; ) ia repregented by a locally flat embedded torus.

Talk 2 (next week):

Theorem [Freedman-Quinn]: Let K& @ be a knot with Alexander polynomial one.
Then K ig topologically lice.



Locally flat eurfaceg in 4-manifolds

Definition: Let M be a 4-manifold and Z a eurface. An embedding f: Z<>M ig gaid
to be locally flat if ¥ xe Z_, there existe U3 flx) with (U, UN fig) =~ (R* R

) oM



(Beneric immergiong

Definition: Let M be a 4-manifold and = a surface. A map :Z2— M ig gaid to be a
generic immergion if it ig a locally flat embedding except at isolated, trangverge double
point gingularitieg, i.e. pointe with neighbourhoods U, such that (U, UNfIZ))=

R R )
L M
S e
F0)=£(2)

oM

Then we write f: Z=>M.



Fundamental toole

Theorem [Freedman-Quinn]: Every continuoug map 2 —> M ig homotopic to a
generic immersion.

Theorem [Quinn: Every locally flat submanifold of M hag a (linear) normal bundle.

Theorem [Quinn]: Let 2, 2., denote locally flat eubmanifolde of M. Then there ig an
ambient igotopy of M taking £,t0 =, such that Z/and Z, intergect trangvergely.



Visualiging locally flat embeddinge/generic immergiong

IR?"X- g Rgxo fkgx 4
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Visualiging locally flat embeddinge/generic immergiong
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Visualiging locally flat embeddinge/generic immergiong
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Visualiging locally flat embeddinge/generic immergiong

R?’x g
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Visualiging the Clifford torug := 91><3 X Sz
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Fundamental tool: diec embedding theorem

Theorem [Freedmanl: Let M be a gimply connected 4-manifold.
(3
Let : D25M and g: 922> M be generic immergione uch that:

J, J

J0—=aM _
(i) g hag trivial normal bundle; {ZW

(ii) g hag trivial eelf-intergection, g.g =O; l oM
(iii) f and g are algebraically dual, f.g =!.

Then there exicte f~f and g~ g such that f %

(i) f i alocally flat embedding, and M

(ii) f and g are geometrically dual, fag is a single, trangverce double point.

N.b. There wag a typo on thig glide during the actual talk!



Oroof of the theorem

Theorem [Lee-Wilczyhskil: Let M be a closed, gimply connected <-manifold.
Then every primitive % & H, (M; Z) ie repregented by a locally flat embedded torus.

Oroof:
Step |: Repregent o by a generic immersion f: Q% M
with a geometrically dual sphere g: Qs M £

M =1 = (M) =H,(M; Z)

= there existe £: Sos M with [f] = o §)
By Poincaré duality, there existe Be H,(M; Z) with o - =1
Aq before, there existe g: Qs M with o] =
Geometric Caggon lemma: up to homotopy, can assume f and g are
geometrically dual



Oroof of the theorem

Step 2: Arrange that the gigned count of
self-intergectiong of f ig zero

Interior twisting



Oroof of the theorem

Step 3: Lair up gelf-intersections of f with N’
generically immersed Whitney diecs {W;} F —

e e

.




Oroof of the theorem

Step 3: Lair up gelf-intersections of f with N’
generically immersed Whitney diecs {W;} : —

Ay Fue

]




Oroof of the theorem

Step 3: Pair up self-intergectiong of f with +
generically immersed Whitney diecs {W;}

M 48




Oroof of the theorem

Reality



Oroof of the theorem

Oroblem Solution Cost
We \X)J Disc embedding theorem  None if all elee golved
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Oroof of the theorem

Claim: [ all self-intergections of f are paired by untwisted, generically immersed
Whitney disce with embedded, digjoint boundarieg and interiors digjoint from 1, then
can find locally flat embedded Whitney digee and do the Whitney move.



Oroof of the theorem

Claim: [ all self-intergections of f are paired by untwisted, generically immersed
Whitney digce with embedded, digjoint boundarieg and interiorg digjoint from {, then
can find locally flat embedded Whitney digee and do the Whitney move.
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Oroof of the theorem

Claim: [ all self-intergections of f are paired by untwisted, generically immersed
Whitney disce with embedded, digjoint boundarieg and interiorg digjoint from f, then
can find locally flat embedded Whitney digee and do the Whitney move.




Oroof of the theorem

Claim: [ all self-intergections of f are paired by untwisted, generically immersed
Whitney disce with embedded, digjoint boundarieg and interiorg digjoint from f, then
can find locally flat embedded Whitney digee and do the Whitney move.
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Oroof of the theorem

Claim: [ all self-intergections of f are paired by untwisted, generically immersed
Whitney disce with embedded, digjoint boundarieg and interiors digjoint from 1, then
can find locally flat embedded Whitney digee and do the Whitney move.

— —
Dice

embedding
theorem



Oroof of the theorem

Oroblem Solution Cost
We \X.)J Disc embedding theorem  None if all elee golved

[nterior twigting

tw(OWe)
Boundary twigting

oW; haWs  Boundary pushott
{ubing into g

Trangfer move




Oroof of the theorem

Oroblem Solution Cost
We \/Q)‘ Disc embedding theorem  None if all elee golved

twl(dWs) = twloWe) £ 2

[nterior twigting 0 Ul —> [0 U] + |

tw(OWe)
Boundary twigting

oW; haWs  Boundary pushott
{ubing into g

Trangfer move




Geometric manoeuvreg

Do

Boundary twigting



Geometric manoeuvreg

Boundary pushoft



(Beometric manoeuvreg

pd I
PN
(lF




Beometric manoeuvreg




Oroof of the theorem

Oroblem Solution Cost
We \X)J Disc embedding theorem  None if all elee golved

tw(oWs) — tw(dWe) + 2

e AWl — [0 rh Ul +

- tw(eWs) = twldW:) + |

Boundary twigting b 1> [{hf+ 1

W AWkl — [2W; W[ - |

0 £ 1 —> 1A £ [+ 1

W AL — 100 DI -1
{ubing into g twloW;)—twl(dWe) + elvo)

0 Wz & Wl uncontrolled
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Returning to proot of the theorem

Step 4 Uge geometric manoeuvreg to engure {W;} are untwigted and have embedded,
digjoint boundaries, and moreover {Wzh f} hag at mogt one point.

_ o {oWe} embedded, 5  tw(oWe)=0Oorl

Boundary dinOil’\ ; [nterior twisting

uhof for each i

l Boundary twisting

Wy hfeven for all but ¢ 4 3k) = O for eachi
pOQQib(g one i) gag | = O Tranefer move

{We}e40 untwisted,
embedded, digjoint
tw(d W) even for alli#+O ——  boundarieg, interiorg

[nterior twigting

digjoint from f

Tube all W; with i # O into g l



Returning to proot of the theorem

Step 5: [f {Ws } untwisted, with embedded digjoint boundaries, and interior digjoint
from 1, for all i, proceed to next step.

[t not: stabilise to add genug and do the band-fibre finger move twice.

% /
Find two annuli (

e — e p—

L / Band-fibre £ | /

finger move
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Returning to proot of the theorem

Step 5: [f {W; } untwisted, with embedded digjoint boundaries, and interior digjoint
from 1, for all i, proceed to next step.

[t not: stabilise to add genug and do the band-fibre finger move twice.

Two new Whithey digce
— V1 ahd V,_, Wl"'h 3\/1('\3\/,_ —_—

inal ind Boundary
a singie poin puchoff

Trangfer move,
tube into g,
interior twigt

A\ 4

{Ws} untwigted, with embedded digjoint
boundaries, and interior digjoint from f, for all i.



Returning to proot of the theorem

Step 6: Uge Clifford tori to get algebraically dual ephereg for {W;}, apply the dige
embedding theorem to find locally flat embedded Whithey digee, and do the Whitney move.

embedding
theorem

Whitney movel




Locally flat eurfaceg in 4-manifolds

Talk [:

Theorem [Lee-Wilezyhskil: Let M be a cloged, simply connected 4-manifold.
Then every primitive b & H, (M; ) ia repregented by a locally flat embedded torus.

Talk 2 (next week):

Theorem [Freedman-Quinn]: Let K& @ be a knot with Alexander polynomial one.
Then K ig topologically lice.



Geometric Cageon lemma
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Constructing locally flat
eurfaceg in 4-manifoldg



Locally flat eurfaceg in 4-manifolds

Talk | (laet week):

Theorem [Lee-Wilezyhskil: Let M be a cloged, simply connected 4-manifold.
Then every primitive b & H, (M; ) ia repregented by a locally flat embedded torus.

Talk 2 (today):

Theorem [Freedman-Quinn]: Let K& @ be a knot with Alexander polynomial one.
Then K ig topologically lice.



Topologically slice knotg

Definition [Fox-Minor}: A knot K € € ie caid fo be topologically slice if it bounds a
locally flat dicc in B je. § 5>’

an. . jaq
D—-1B
locally flat



Locally flat eurfaceg in 4-manifolds

Definition: Let M be a 4-manifold and Z a eurface. An embedding f: Z<>M ig gaid
to be locally flat if ¥ xe Z_, there existe U3 flx) with (U, UN fi2)) = (R* R)

) oM



Fundamental toole

Theorem [Freedman-Quinn]: Every continuoug map 2 —> M ig homotopic to a
generic immersion.

Theorem [Quinn: Every locally flat submanifold of M hag 4 (linear) normal bundle.

Theorem [Quinn]: Let 2, 2., denote locally flat eubmanifolde of M. Then there ig an
ambient igotopy of M taking £,t0 =, such that Z/and Z, intergect trangvergely.



Topologically slice knotg

Definition [Fox-Minor}: A knot K € € ie caid fo be topologically slice if it bounds a
locally flat dicc in B je. § 5>’
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Topologically slice knotg

Definition [Fox-Minor}: A knot K € € ie caid fo be topologically slice if it bounds a
locally flat dicc in B je. § 5>’

a[l Ia
Db, B’
D'x D

Check:
3(B\GA) = ¢ (K)
O-framed Dehn eurgery on K



O-gurgery characterigation of topological sliceness

Theorem: A knot K € e topologically glice it and only it
3

SollC) = dW where W ig a compact, connected topological 4-manifold euch that
)22 H(S(K; 2) > H(W; 2);

(ii) ,W ie normally generated by the meridian pkegi(K); and

(iii) Hy(W: Z2) = O.




O-gurgery characterigation of topological sliceness

Theorem: A knot K € e topologically glice it and only it
3

SollC) = dW where W ig a compact, connected topological 4-manifold euch that
)22 H(S(K; 2) > H(W; 2);

(ii) ,W ie normally generated by the meridian pkegi(K); and

(iii) Hy(W: Z2) = O.

Proof of “if” direction:
- Given W glue on D'x D

along pix
- ldentity regulting manifold

ag B* )
- ldentify O x D ag
topological glice dise for K




Alexander polynomial one knote

Oroposition/ definition: A knot K & S hag Alexander polynomial one if and only if
H{SK); 212)) = 0

N’

Note: H1(§°(K); Z)=7 0 Si(K) hae an infinite cyclic cover (K.

O o~

By definition, ag an abelian group HJQE(K); Z[7)) ie cimply H,(Si(K); 2).
Remembering the action of Z makes thie a Z[Z]-module.



Equivariant intergection numberg

Definition: Let M be a cloged, oriented, connected <-manifold with a bage point % € M.
Define Ay : m(M) x (M) — Z[m,M] ag follows.




Equivariant gelf-intergection numberg

Definition: Let M be a cloged, oriented, connected <-manifold with a bage point % € M.

%

e 4

Define py,: (M) %/Z[TL,M]/\J ag follows.

M

i ) =P€F'b(3 & . Op € ZIMM| Iz



Fundamental tool: gphere embedding theorem

Theorem [Freedman-Quinn]: Let M be a conneeted 4-manifold.
Suppose that (M) ie “good”, e.g. finite, abelian, golvable, ...
Let £: Qs M and g: S5 M be generic immergiong such that

(i) g hag trivial normal bundle;
(i) py() =0O; and
(i) f and g are algebraically dual, A(£g) =l l

Then there exict f~ f and g ~ g euch that _ 3
(i) f ic a locally flat embedding, and !

(ii) f and g are geometrically dual, fag is a single, trangverce double point.

When t,(M) # [, outcome (i) is due to Dowell-R.-Teichner.



Oroof of the theorem

Theorem [Freedman-Quinn]: Let K& Q be a knot with Alexander polynomial one.
Then K ig topologically glice.

Proof cketeh:
Qince H,(Q(K); 2) 2 Z<u,>, there ig a map f: Qz(K) —> 9 auch that the induced

map on fundamental groupg sendg [y, J—>1.

Boal: Build a compact, connected 4-manifold W guch that QoK) 8

al/



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K

al/

[nput: Q3 122 Recal: Elemente of Q3 (Q) are (Y5, Y—3
QK )) 5 ) ArflK) =0 where S ig a gpin structure on the cloged 3-manifold Y,
and (Yp,5,fo) ~ (Y4, 5, ) if there existe a compact
d-manifold  with a gpin structure t guch that

o(Zt) =% 5)U (Y;,5,) and(Y,,S,)

30, fo

2t) 2S¢

)
v 5,) et



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K

al/

Note: F ig not a homotopy equivalence.
[n he regt of the proof we will upgrade F (and V) until we get a homotopy equivalence.

Recal if B 1,V — (<) ie an isomorphism for all i, then F ie a homotopy equivalence
by Whitehead’s theorem.

For ug, by Poincaré-Lefechetz duality, it will be enough to arrange for  to be an
isomorphiem for i = O,,2.



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K

al/

Step 2: Arrange for Fy to be an isomorphigm on T,

By congtruction, F ie already a surjection on T,
To make it an injection ag well, perform surgery on circleg

Given {5 in the kernel of & replace U by U\ U u (S x D)

Note: vy = §'x D 20 we have dug = 3(x D)
There are two choiceg of gluing map. Use the one o that the result ig still epin.



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K

>
Step 2: Arrange for F to be an icomorphiem on T, 1 /
Step 3: Replace V with gome V' with hyperbolic intergection form

Congider (m,(V), Ay, py) € Ly (Z[Z]), the L-group of nongingular quadratic forme
Reeall: (V) = H,(V; ZIZ]) cince (V) = Z.

By surgery on circles we can ageume r,(V) ie a free Z[Z]-module

Qince K hag Alexander polynomial one, i.e. Hy (SK); Z[Z]) =

the equivariant intergection form A, (V) x m,(V) %/Z[Z] ie non-gingular



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K
. . ] /
Step 2: Arrange for F to be an isomorphiem on T,
Step 3: Replace V with gome V' with hyperbolic intergection form
Congider (m,(V), Ay, py) € Ly (Z[Z]), the L-group of nongingular quadratic forme

Fact: L(Z[Z]) = &Z given by the signature

Theorem [Freedmanl: There existe a cloged, spin, simply connected -manifold ES
with intergection form the E& form with sighature &.

So if (m,(V), Ay, uy) = 8n e 8Z =, (Z[Z]), replace V with V=V #-nE8.
Note U’ ig apin, and (m,(V'), Ayr, i) = O € 8Z £, (Z[2))




Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K

. . ] /
Step 2: Arrange for F to be an isomorphiem on T,
Step 3: Replace V with gome V' with hyperbolic intergection form

(m(V), Ays, 1) = O € 8Z =L, (21Z)),

y R

o0 by definition, (r,(U'), Ay, py) is (tably) hyperbolic

In the eimplest cage, thie meane 1,(V') hag a bagic of generic immersione {£g : Qas\/ )
quch that

(i) £ have trivial normal bundle (gince V' ig spin;

(ii) pylf) = O; and

(i) A\lfg) = |



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K
. . ] /
Step 2: Arrange for F to be an isomorphiem on T,

Qtep 3: Replace V with some V' with hyperbolic intersection form

Qtep 4: Relice half a bagie of m,(V') with locally flat, pairwice digjoint, embedded 2-
apheres {f,, ..., .}, equipped with geometrically dual (generically immerced) ephereg

f 3 Sphere f f %
embedding 3

3

theorem



Oroof of the theorem

Qtep |- Build compact, connected, pin 4-manifold U uch that Qo (K
. . ] /
Step 2: Arrange for F to be an isomorphiem on T,

Qtep 3: Replace V with some V' with hyperbolic intersection form

Qtep 4: Relice half a bagie of m,(V') with locally flat, pairwice digjoint, embedded 2-
apheres {f,, ..., .}, equipped with geometrically dual (generically immerced) ephereg

Step 5: Perform aurgery on V along {F, ..., f} and call the result W
e. for each i, replace U by U\ of: v (Sx D)

Check that W aatiefies Qo (K) L>8




Locally flat eurfaceg in 4-manifolds

Talk | (laet week):

Theorem [Lee-Wilezyhskil: Let M be a cloged, simply connected 4-manifold.
Then every primitive b & H, (M; ) ia repregented by a locally flat embedded torus.

Talk 2 (today):

Theorem [Freedman-Quinn]: Let K& @ be a knot with Alexander polynomial one.
Then K ig topologically lice.



