SUPERSLICE KNOTS HAVE ALEXANDER POLYNOMIAL ONE

RYAN BLAIR, PATRICIA CAHN, ALEXANDRA KJUCHUKOVA, KENT ORR, ARUNIMA RAY, AND HANNAH SCHWARTZ

A knot K is said to be (topologically) superslice if it bounds a flat, properly embedded disc Δ in B^4 such that the double of (B^4, Δ) is isotopic to (S^4, U) , where U is the unknotted 2-sphere. In [LM15, p. 1019], it is asserted that any superslice knot has Alexander polynomial one, with a reference to a paper of Gordon-Sumners [GS75]. However, we have not been able to detect a proof of this fact within the latter paper. Jeffre Meier later pointed us to a proof in [Rub16, Corollary 1.3], but by then we had already found the elementary proof we now give.

Proposition 1. If K is a superslice knot with superslicing disc Δ then $\pi_1(B^4 \setminus \Delta) \cong \mathbb{Z}$ and consequently, $\Delta_K(t) \doteq 1$.

Proof. Let Δ be a superslicing disc for K and Σ denote the double of Δ in S^4 . By definition, Σ is unknotted and thus, $\pi_1(S^4 \setminus \Sigma) \cong \mathbb{Z}$. We also know that $S^4 \setminus \Sigma$ is the double of $B^4 \setminus \Delta$ and thus there is a retraction $r: S^4 \setminus \Sigma \to B^4 \setminus \Delta$, which is sometimes called the *folding map*. In other words,

$$r \circ \iota \colon B^4 \setminus \Delta \to B^4 \setminus \Delta$$
,

where ι denotes inclusion, is the identity map. Consequently, the map r_* on fundamental groups is surjective. As a result, $\pi_1(B^4 \setminus \Delta)$ is a quotient of $\pi_1(S^4 \setminus \Sigma) \cong \mathbb{Z}$. Since $H_1(B^4 \setminus \Delta) \cong \mathbb{Z}$, we conclude that $\pi_1(B^4 \setminus \Delta) \cong \mathbb{Z}$. The latter implies that $\Delta_K(t) \doteq 1$.

The above establishes the following theorem.

Theorem 2. A knot K is (topologically) superslice if and only if $\Delta_K(t) \doteq 1$. Indeed, a slice disc Δ for a knot is a superslicing disc if and only if $\pi_1(B^4 \setminus \Delta) \cong \mathbb{Z}$.

Proof. Proposition 1 establishes that if Δ is a superslicing disc for K then $\pi_1(B^4 \setminus \Delta) \cong \mathbb{Z}$ and $\Delta_K(t) \doteq 1$. We now show the converse. Let Δ be a slice disc for K with $\pi_1(B^4 \setminus \Delta) \cong \mathbb{Z}$. The existence of such a disc is equivalent to the condition that $\Delta_K(t) \doteq 1$. Let Σ be the double of Δ in S^4 . By the Seifert-van Kampen theorem, $\pi_1(S^4 \setminus \Sigma) \cong \mathbb{Z}$. By [FQ90, Theorem 11.7A], this implies that Σ is (topologically) isotopic to the unknot as desired.

In contrast, in the smooth category, it was shown by Ruberman [Rub16] that there exist knots with Alexander polynomial one which are not smoothly superslice.

References

- [FQ90] Michael Freedman and Frank Quinn. *Topology of 4-manifolds*, volume 39 of *Princeton Mathematical Series*. Princeton University Press, 1990.
- [GS75] C. McA. Gordon and D. W. Sumners. Knotted ball pairs whose product with an interval is unknotted. Math. Ann., 217(1):47–52, 1975.
- [LM15] Charles Livingston and Jeffrey Meier. Doubly slice knots with low crossing number. New York J. Math., 21:1007–1026, 2015.
- [Rub16] Daniel Ruberman. On smoothly superslice knots. New York J. Math., 22:711-714, 2016.