


Abstract

Casson Towers and Filtrations of the Smooth Knot Concordance Group

by

Arunima Ray

The 4–dimensional equivalence relation of concordance (smooth or

topological) gives a group structure on the set of knots, under the connected-

sum operation. The n–solvable filtration of the knot concordance group

(denoted C), due to Cochran–Orr–Teichner, has been instrumental in the

study of knot concordance in recent years. Part of its significance is due

to the fact that certain geometric attributes of a knot imply membership

in various levels of the filtration. We show the counterpart of this fact for

two new filtrations of C due to Cochran–Harvey–Horn, the positive and

negative filtrations. The positive and negative filtrations have definitions

similar to that of the n–solvable filtration, but have the ability (unlike

the n–solvable filtration) to distinguish between smooth and topological

concordance. Our geometric counterparts for the positive and negative fil-

trations of C are defined in terms of Casson towers, 4–dimensional objects

which approximate disks in a precise manner. We establish several rela-

tionships between these new Casson tower filtrations and the various pre-

viously known filtrations of C, such as the n–solvable, positive, negative,

and grope filtrations. These relationships allow us to draw connections

between some well-known open questions in the field.
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Chapter 1

Introduction

1.1 Background

A knot is the image of a smooth, oriented embedding S1 ↪→ S3. In practice, one can

think of a knot as simply a closed loop in space, such as those pictured in Figure 1.1.

Similarly, a link is the image of a smooth, oriented embedding of an ordered collection

of S1’s, i.e. each component of a link is a knot. Two knots (or links) are isotopic if

we can smoothly deform one to the other in 3–space. Isotopy gives an equivalence

relation on the set of knots, and from now on, we will often use the word ‘knot’ to

refer to an isotopy class of knots. For example, the two left-most pictures in Figure

1.1 are of the same knot, called the unknot or the trivial knot.

Knots and links are closely related to 3–dimensional manifolds—spaces that lo-

Figure 1.1: Examples of knots.
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S3 × [0, 1]

K

J

Figure 1.2: Concordance of knots.

cally resemble R3—as we can see in the following famous theorem: any closed, con-

nected, orientable 3–manifold can be obtained from the 3–sphere by performing a

certain operation (surgery) on S3 along some link [Lic62, Wal60]. Briefly, this in-

volves cutting out a thickening of the knot from S3 and then gluing the pieces back in

a non-trivial manner. Manifolds (of various dimensions) form a very important topic

of mathematical study and examples of manifolds abound in theory and practice alike.

1.1.1 Knot concordance

Two knots K and J are said to be concordant if they cobound a smooth annulus in

S3 × [0, 1] (here we consider K to be contained in S3 × {0} and J in S3 × {1}). A

schematic picture is shown in Figure 1.2. A knot is called slice if it is concordant

to the unknot or equivalently if it bounds a smooth, properly embedded disk in B4.

Such a disk bounded by a slice knot in B4 is called a slice disk. Since a knot is trivial

(i.e. isotopic to the unknot) exactly when it bounds an embedded disk in S3, being a

slice knot is clearly a generalization of being a trivial knot. We can extend the notion

of concordance and sliceness to links. Two links are concordant if there is a system of

smooth annuli between them in S3× [0, 1] and a link is slice if its components bound
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a collection of disjoint smooth disks in B4.

Much like how knots under the 3–dimensional equivalence relation of isotopy are

related to 3–manifolds, knots under the 4–dimensional equivalence relation of con-

cordance are closely related to 4–dimensional manifolds. This can be seen when one

chooses to study a 4–manifold by understanding disjoint embeddings of 2–manifolds

within it; this is a natural approach since, by analogy, the torus can be identified

as being the only surface on which any two non-isotopic homologically non-trivial

connected 1–manifolds must intersect. Two generic 2–manifolds within a 4–manifold

intersect at isolated points. We would like to modify the 2–manifolds to make them

disjoint. Since 4–manifolds are locally like R4, we can find a small 4–dimensional ball

V around each point of intersection. The 2–manifolds intersect the boundary of V

(i.e. a 3–sphere) in a closed 1–manifold of potentially several components, namely,

a link! Therefore, if the link were slice, we would be able to use the system of slice

disks for it to obtain disjoint 2–manifolds.

There is a natural binary operation on the set of knots known as the connected

sum operation, depicted in Figure 1.3. The set of knots, modulo concordance, under

the connected sum operation forms an abelian group called the knot concordance

group, denoted by C. We will often use the same letter to denote a knot K and its

concordance class.

There is a parallel theory of concordance in the topological category. In partic-

ular, two knots K and J are said to be topologically concordant if they cobound a

K J K#J

Figure 1.3: Connected sum of knots.
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topologically embedded locally flat annulus in S3× [0, 1], and a knot is called topolog-

ically slice if it is topologically concordant to the unknot (or equivalently, if it bounds

a proper, topologically embedded, locally flat disk in B4). Clearly, any slice knot is

topologically slice. There exist infinitely many knots which are topologically slice but

not smoothly slice (see, for example, [Gom86]).

The marked dissimilarity between the smooth and topological categories is typical

of dimension four. In some sense, one may consider dimension four as a boundary case

between low and high dimensions: there are enough dimensions for the topology to

exhibit complex behavior, but not enough space for our tools to work. This behavior

is exemplified by the following: a closed manifold of dimension three or lower admits

exactly one smooth structure; a closed manifold of dimension five or higher admits

at most finitely many distinct smooth structures; however, a closed 4–manifold may

have infinitely many distinct smooth structures [GS99, pp. 6–7].

The 3–dimensional study of knots frequently focuses on quantifying ‘how close

a knot is to being unknotted’ through the use of various invariants such as Seifert

genus, crossing number, unknotting number, etc. (see any introductory knot theory

book, such as [Ada04] for more on these invariants). Similarly, the 4–dimensional

study attempts to assess ‘how close a knot is to being slice’. In 2003, this notion was

formalized when Cochran–Orr–Teichner [COT03] introduced the n–solvable filtration

of C:

· · · ⊆ Fn+1 ⊆ Fn ⊆ · · · ⊆ F0 ⊆ C

and showed that the lower levels of the filtration encapsulate the information one can

extract from various classical concordance invariants, such as algebraic concordance

class, Levine–Tristram signatures, Casson–Gordon invariants, etc. That is, the deeper

a knot is within the n–solvable filtration, the closer it is to being slice. Studying

filtrations gives us a way of understanding the structure of C, a large unwieldy object,
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in terms of smaller (and hopefully simpler) pieces.

Part of the justification for the naturality of the n–solvable filtration is its close

relationships with several more geometric filtrations of C. In particular, certain ge-

ometric attributes of a knot imply membership in various levels of the n–solvable

filtration, as seen in the following thorem.

Theorem 1 (Theorems 8.11 and 8.12 of [COT03]). If a knot K bounds a grope of

height n + 2, then K is n–solvable. If a knot K bounds a Whitney tower of height

n+ 2, then K is n–solvable.

Recall that a knot K is slice if it bounds a disk in B4. We may therefore approx-

imate sliceness in either of the following ways:

1. by considering objects bounded by K in B4 which approximate disks

2. by considering disks bounded by K in manifolds that approximate B4

The definition of the n–solvable filtration follows the second paradigm i.e. we filter

knots based on certain properties of 4–manifolds within which they bound disks, while

gropes and Whitney towers are approximations of a disk in a precise manner i.e. the

taller a grope or Whitney tower bounded by a knot, the closer the knot is to being

slice (see Chapter 2 for precise definitions).

While the n–solvable filtration has been an invaluable tool in the study of C, it

fails to distinguish between smooth concordance classes of topologically slice knots,

i.e. if K is topologically slice, K is n–solvable for all n. To address this shortcoming,

Cochran–Harvey–Horn [CHH13] recently introduced a new pair of filtrations of C, the

positive and negative filtrations:

· · · ⊆ Pn+1 ⊆ Pn ⊆ · · · ⊆ P0 ⊆ C



6

· · · ⊆ Nn+1 ⊆ Nn ⊆ · · · ⊆ N0 ⊆ C

(see Chapter 2 for precise definitions) which have been successful at distinguishing

between smooth concordance classes of topologically slice knots. Cochran–Harvey–

Horn also defined the bipolar filtration of C, Bn := Pn ∩ Nn [CHH13], and it is

expected that this filtration will non-trivially filter topologically slice knots at each

n. This is currently known for knots at n ≤ 1 [CHH13, CH12]. For links of two or

more components, this is known for all n by work of Cha–Powell [CP12].

The definitions of the positive and negative filtrations are analogous to that of

the n–solvable filtration, in that one filters knots based on certain properties of 4–

manifolds within which they bound slice disks. The primary goal of this thesis is

to construct the counterparts for the positive and negative filtrations using the first

paradigm for approximating sliceness, i.e. by considering geometric objects which

approximate disks bounded by knots in B4.

1.1.2 Casson towers

Casson towers [Cas86, Fre82]—4–dimensional objects built using layers of immersed

disks (see Figure 1.4 for a schematic picture)—form an important piece of this thesis

and have been of central importance in the study of topological 4–manifolds. The

Figure 1.4: Schematic diagram of a Casson tower of height three.
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Figure 1.5: Schematic diagram of a regular neighborhood of an immersed disk with
three kinks. At each kink, we can see a simple closed curve which cannot be contracted
within the disk.

general idea behind them is as follows. Any smooth map of a disk D into a 4–manifold

M such that ∂D is mapped to ∂M can be perturbed slightly to get an immersed disk

D′. An immersed disk differs from an embedded disk in that there are isolated points

of self-intersection, i.e. kinks. In particular, while any simple closed curve on an

embedded disk can be contracted to a point, there exist curves on immersed disks

which cannot: in particular, consider the simple closed curves {αi} which travel from

a kink along one sheet of the disk and returns to the kink along the other sheet

(see Figure 1.5). The fundamental group of an immersed disk is freely generated

by the curves {αi}. If we could find embedded disks bounded by these curves in

the complement of D′ in M , we could use those disks to resolve the kinks and get

an embedded disk (using a process known as the Whitney trick). However, finding

such disks is generally quite hard, and at best we can only hope for a disjoint set of

immersed disks {D′′i }—one for each αi. While this would not allow us to obtain an

embedded disk, this would nullify each αi in the union of D and {D′′i } since they would

now bound disks. However, we do get a new set of fundamental group generators,

namely curves at the kinks in the new disks {D′′i }. Nonetheless, in this new object,

we have pushed the generators of the fundamental group to the second stage, and

we can repeat the process. That is, starting with an immersed disk, we can attach

immersed disks at the curves at each kink, then attach even more kinky disks at the

curves at the kinks in the second layer or disks and so on; the object we obtain if we
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stop at any finite stage and take a regular neighborhood is called a Casson tower (see

Figure 1.4; the fundamental group of a Casson tower is freely generated by curves

at the kinks of the disks attached in the terminal layer, for example, there are four

generators for the fundamental group of the tower shown in Figure 1.4.

In the 1970’s, Casson had the wonderfully bold idea of continuing the process of

building a Casson tower indefinitely, i.e. he defined a Casson handle to be a Cas-

son tower with infinitely many layers of immersed disks and showed, amazingly,

that every Casson handle is proper homotopic, relative to its attaching boundary,

to D2 × R2. This foreshadowed one of the truly mind-boggling results in topology:

in 1981, Freedman [Fre82] showed that any Casson handle is in fact homeomorphic

to D2 × R2, i.e. any Casson handle is homeomorphic to a regular neighborhood of

an embedded disk. In essence, this says that by continuing to push our fundamental

group generators farther and farther away, by pushing to infinity we can simply get

rid of them. This highly technical result led to a wealth of beautiful results about

topological 4–manifolds, such as the topological h–cobordism theorem (which im-

plies the 4–dimensional topological Poincaré Conjecture) and Freedman’s complete

classification of topological 4–manifolds. Additionally, it implies that any knot with

Alexander polynomial 1 is topologically slice. Freedman also proved a Reimbedding

Theorem for Casson towers showing that any Casson tower of height six contains a

Casson handle within it (this later improved by Gompf in [GS84] who showed that

any Casson tower of height five contains a Casson handle).

It is worth noting that Freedman’s result does not hold in the smooth category

and in fact, there are uncountably many diffeomorphism classes of Casson handles

[Gom84, Gom89].



9

1.2 Results

In this thesis we will prove counterparts of Theorem 1 for the positive and negative

filtrations in terms of Casson towers. In particular, we define several new filtrations

of C:

· · · ⊆ Cn+1 ⊆ Cn ⊆ · · · ⊆ C1 ⊆ C

· · · ⊆ C+
n+1 ⊆ C+

n ⊆ · · · ⊆ C+
1 ⊆ C

· · · ⊆ C−n+1 ⊆ C−n ⊆ · · · ⊆ C−1 ⊆ C

· · · ⊆ C2, n+1 ⊆ C2, n ⊆ · · · ⊆ C2, 0 ⊆ C1 ⊆ C

· · · ⊆ C+
2, n+1 ⊆ C+

2, n ⊆ · · · ⊆ C+
2, 0 ⊆ C+

1 ⊆ C

· · · ⊆ C−2, n+1 ⊆ C−2, n ⊆ · · · ⊆ C−2, 0 ⊆ C−1 ⊆ C

Any knot K that can be changed to a slice knot by only changing positive crossings

to negative crossings is known to be in P0 by [CHH13, Proposition 3.1] and [CL86,

Lemma 3.4]. Such a knot also bounds an immersed disk in B4 with only positive

self-intersections (i.e. kinks). Indeed if a knot K bounds an immersed disk in B4 with

only positive kinks, we can ‘blow up’ the kinks, i.e. connect-sum with a CP(2) at each

kink, to obtain a slice disk for K in a 4–manifold with positive definite intersection

form as called for in the definition for P0. (This reveals how the definition of P0 is a

generalization of both the ordering on knot concordance classes given by [CG88] and

[CL86], and the notion of kinkiness of knots defined by Gompf in [Gom86].) Similar

statements hold for knots bounding immersed disks with only negative kinks and N0.

Since bounding an immersed disk is closely related to membership in P0 and N0,

Casson towers—built using layers of immersed disks—are natural objects to study in

this context.



10

In this thesis, we establish several relationships between various filtrations of C

(Theorem A) and completely characterize knots in C±1 , i.e. knots which bound kinky

disks in B4 with only positive (resp. negative) kinks (Theorem B) as follows.

Theorem A. Let {Gn}∞n=0 the (symmetric) grope filtration of C. {G2, n}∞n=0 is a slight

enlargement of the grope filtration. (Precise definitions for the filtrations can be found

in Chapter 2.)

For any n ≥ 0,

(i) Cn+2 ⊆ Gn+2 ⊆ Fn,

(ii) C2, n ⊆ G2, n ⊆ Fn,

(iii) C+
n+2 ⊆ C+

2, n ⊆ Pn,

(iv) C−n+2 ⊆ C−2, n ⊆ Nn.

Theorem B. For any knot K, the following statements are equivalent.

(a) K ∈ C+
1 (resp. C−1 )

(b) K is concordant to a fusion knot of split positive (resp. negative) Hopf links

(c) K is concordant to a knot which can be changed to a ribbon knot by changing

only positive (resp. negative) crossings.

The second inclusion in part (i) of Theorem A is exactly the second result listed

earlier in Theorem 1 [COT03, Theorem 8.11] and we only include it here for com-

pleteness.

Let Wn denote the set of knots which bound Whitney towers of height n in B4.

From their definitions it can be easily seen that any Casson tower yields a Whitney

tower with the same attaching curve. As a result, in conjunction with Theorem 1

[COT03, Theorem 8.12], it was already known that Cn+2 ⊆ Wn+2 ⊆ Fn for all n. Our
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contribution consists of showing that if a knot bounds a Casson tower T of height n in

B4, it bounds a properly embedded grope of height n within T (Proposition 3.1). In

contrast, Schneiderman has shown that if a knot bounds a properly embedded grope

of height n in B4, it bounds a Whitney tower of height n in B4 [Sch06, Corollary

2]. The converse to Schneiderman’s statement is not known. In summary, it was

previously known that Gn+2 ⊆ Wn+2 ⊆ Fn and Cn+2 ⊆ Wn+2 ⊆ Fn. We have now

shown that Cn+2 ⊆ Gn+2 ⊆ Wn+2 ⊆ Fn.

We will see that C±n ⊆ Cn and C±2, n ⊆ C2, n for all n, and therefore parts (i) and (ii)

of Theorem A imply that C±n+2 ⊆ Fn and C±2, n ⊆ Fn. Along with [CHH13, Proposition

5.5] which states that Pn ⊆ Fodd
n (and Nn ⊆ Fodd

n ), we get the following inclusions for

each n. ({Fodd
n }∞n=0 is a larger filtration than the n–solvable filtration, i.e. Fn ⊆ Fodd

n

for each n.)

Fn ⊆ Fodd
n

⊆ ⊆

C+
n+2 ⊆ Pn

Fn ⊆ Fodd
n

⊆ ⊆

C+
2, n ⊆ Pn

Fn ⊆ Fodd
n

⊆ ⊆

C−n+2 ⊆ Nn

Fn ⊆ Fodd
n

⊆ ⊆

C−2, n ⊆ Nn

We state the following corollaries to facilitate easy reference in our proofs and

examples. They may be considered to be corollaries of Theorem A or of Theorem 1

along with the fact that Casson towers yield Whitney towers with the same attaching

curve.

Corollary 1. If a knot K lies in C2, Arf (K) = 0.

Corollary 2. If a knot K lies in C2, 1, then K is algebraically slice.

The above statements follow easily from well-known properties of the n–solvable

filtration, namely, any knot in F0 has trivial Arf invariant and any knot in F1 is

algebraically slice [COT03].

Gompf’s refinement of Freedman’s Reimbedding Theorem for Casson towers [Fre82,
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Theorem 4.4][GS84, Theorem 5.1] implies that the filtrations {Cn}∞n=1 and {C±n }∞n=1

stablize at n = 5, i.e. C5 = C6 = C7 = · · · and C±5 = C±6 = C±7 = · · · . Let T denote the

set of all topologically slice knots. By combining the Reimbedding Theorem with re-

sults of Freedman [Fre82, Theorem 1.1] and Quinn [Qui82, Proposition 2.2.4][Gom05,

Theorem 5.2] we can see that C5 is equal to T . It appears to be widely believed by

experts that C3 is equal to T .

It is worth noting that while C5 = T , each of C±5 is a proper subset of T . This mir-

rors the fact that the positive/negative filtrations are able to distinguish topologically

slice knots while the n–solvable filtration cannot.

As we see above, the {Cn}∞n=1 filtration stabilizes at n = 5 (or conjecturally at

n = 3). It is also easy to see that C1 = C, i.e. any knot bounds an immersed disk in

B4. This indicates that if one is interested in studying smooth concordance classes of

topologically slice knots one should focus on these levels. The filtration {C2, n}∞n=0 is

designed specifically to filter knots within these levels, in particular, between C2 and

C3.

We also see, in Corollary 3.9, that C3 ⊆ C2, n and C±3 ⊆ C±2, n for all n ≥ 0. From

part (i) of Theorem A then,

C3 ⊆
∞⋂
n=0

Fn.

The only presently known elements of
⋂∞

n=0Fn are topologically slice knots and it is

conjectured that
⋂∞

n=0Fn = T . From the above, we can infer that either any knot

bounding a Casson tower of height three is topologically slice or there exist knots in⋂∞
n=0Fn which are not topologically slice. Similarly, since

∞⋂
n=0

C2, n ⊆
∞⋂
n=0

Fn

we are led to conjecture that any knot in
⋂
C2, n is topologically slice.
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By parts (iii) and (iv) of Theorem A,

C+
3 ⊆

∞⋂
n=0

Pn and C−3 ⊆
∞⋂
n=0

Nn.

This indicates that membership in C±3 is a very restrictive condition. For example,

the results of [CHH13] show how membership in just the zero’th and first levels of the

positive and negative filtrations impose severe restrictions on smooth concordance

class. This also reveals that while the positive and negative filtrations have had

success in distinguishing concordance classes of topologically slice knots, they cannot

be used to distinguish between topologically slice knots in C±3 .

1.3 Outline of thesis

We start by stating precise definitions of Casson towers and the various filtrations of C

in Chapter 2. Chapters 3 and 4 consist of the proofs of Theorems A and B respectively;

additionally in Chapter 4 we give an overview of various notions of positivity of knots

and how membership in P0 and C+
1 are related to them. In Chapter 5 we will list

various properties of the Casson tower filtrations. We generalize our results to the

case of (string) links in Chapter 6.



Chapter 2

Notation and definitions

2.1 Casson towers

Suppose f : D →M is a smooth self-transverse immersion, where D is a genus zero,

oriented 2–manifold, M is an oriented, smooth 4–manifold, and f−1(∂M) = ∂D. We

will refer to the points of self-intersection of f(D) as kinks and f(D) as being kinky.

Since M and D are oriented, each kink of f(D) has a canonical sign. A regular

neighborhood of a kinky disk in a 4–manifold will be called a kinky handle.

In our proofs we will frequently utilize Kirby diagrams to describe 4–manifolds.

Background on Kirby diagrams and Kirby calculus can be found in [GS99]. Kirby

diagrams for a kinky handle with a single positive kink are given in Figure 2.1, where

the sign of the clasp corresponds to the sign of the kink. To obtain pictures for a

kinky disk with a single negative kink, we need simply to use the negative clasp. For

more details, the interested reader is directed to Chapter 6 of [GS99].

Using kinky handles we may construct a Casson tower. Detailed descriptions of

Casson towers may be found in [Cas86, Fre82, GS84]. A Casson tower of height one

is simply a kinky handle. A Casson tower of height k + 1 is obtained from one of

height k by attaching kinky handles to the 0–framed meridians of the dotted circles
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Figure 2.1: Two Kirby diagrams for a kinky handle with a single positive kink. The
two panels are pictures of the same space and differ only by an isotopy of curves;
we show both versions since each will appear later in the paper. The dotted curve
represents a 1–handle, and the other curve is the attaching curve for the kinky handle.

representing 1–handles in the kth level kinky handles, for example, in Figure 2.2. The

corresponding infinite construction, i.e. a Casson tower with infinite height is called

a Casson handle.

A Casson tower has a fixed curve in its boundary, called the attaching curve. If we

consider the kinky disk D which forms the core of the first level of the Casson tower,

the attaching curve is exactly the boundary of D. We will consider every Casson

tower to have a fixed decomposition into kinky handles. The meridians of the dotted

circles of the last layer of kinky handles, that is, simple loops traversing the terminal

1–handles exactly once, generate the fundamental group of the Casson tower. A set

of such meridians will be referred to as the standard set of curves for a Casson tower.

Sometimes we will also refer to the meridians of the dotted circles at a given stage

within a Casson tower. For example, we might refer to the standard set of curves at

the second stage of a Casson tower of height four. If a stage of the Casson tower is

not specified, we refer to the standard set of curves at the terminal stage. A Kirby

diagram for a general Casson tower of height two is shown in Figure 2.2.

Every Casson tower has a 2–complex as a strong deformation retract, called its

core. For a Casson tower of height one, namely the regular neighborhood of a disk

D with transverse self-intersections, the core is exactly the immersed disk D. For a
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0

0
0

Figure 2.2: A Kirby diagram for a general Casson tower of height two. The bottom-
most curve in the picture is the attaching curve.

Casson tower of greater height, the core consists of the cores of each kinky handle

along with certain canonical annuli. This is described in greater detail in [GS84,

Section 2.2.6].

We will say that a curve γ ‘bounds a Casson tower T in a 4–manifold M ’ if

there is a proper embedding of T in M where a 0–framed regular neighborhood of

the attaching curve (seen in a Kirby diagram for T ) is identified with a 0–framed

neighborhood of γ in ∂M . If the 4–manifold is not mentioned, the reader should

assume it to be B4. In particular, this means that if a knot K is said to bound, say,

the Casson tower T shown in Figure 2.2, the 0–framed longitude of K in S3 can be

seen as the 0–framed longitude of the attaching curve of T .

Recall that for any group G, G(n) denotes the nth term of its derived series.

Definition 1. A knot K is said to be in Cn if it bounds a Casson tower of height n.

Definition 2. A knot K is said to be in C2, n if it bounds a Casson tower T of height

two such that each member of a standard set of curves for T is in π1(B
4 − C)(n),

where C is the core of T .

Clearly, each Cn and C2, n is a subgroup of C with respect to the connected sum
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operation on knot concordance classes; in particular, the property of bounding a

Casson tower of a particular variety is constant within every knot concordance class,

i.e. for example, if K is in Cn and J is concordant to K, then J is in Cn.

Definition 3. A knot K is said to be in C+
n (resp. C−n ) if it bounds a Casson tower

of height n such that the kinks in the first stage kinky disk are all positive (resp.

negative).

Definition 4. A knot K is said to be in C+
2, n (resp. C−2, n) if it bounds a Casson tower

T of height two such that the kinks in the first stage kinky disk are all positive (resp.

negative) and each member of a standard set of curves for T is in π1(B
4 − C)(n),

where C is the core of T .

Each C±n and C±2, n is a monoid with respect to the connected sum operation on

knot concordance classes. They are not subgroups of C, since if K ∈ C+
n , −K ∈ C−n

but −K may not be in C+
n ; and if K ∈ C+

2, n, −K ∈ C−2, n but −K may not be in C+
2, n.

We will sometimes use the notation C±n when referring to either of C+
n or C−n .

Clearly,

· · ·C±n+1 ⊆ C±n ⊆ · · · ⊆ C±1 ⊆ C

· · ·Cn+1 ⊆ Cn ⊆ · · · ⊆ C1 ⊆ C

and

· · ·C±2, n+1 ⊆ C±2, n ⊆ · · · ⊆ C±2, 1 ⊆ C±2, 0 ≡ C±2 ⊆ C

· · ·C2, n+1 ⊆ C2, n ⊆ · · · ⊆ C2, 1 ⊆ C2, 0 ≡ C2 ⊆ C

Studying the filtrations {Cn}∞n=1 is unsatisfying in general since C5 = C6 = C7 =

· · · . This is due to Freedman’s Reimbedding Theorem [Fre82, Theorem 4.4] (later

improved by Gompf–Singh in [GS84, Theorem 5.1]) which states that any Casson

tower of height five contains within it arbitrarily high Casson towers sharing its initial
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three stages. In particular, this allows us to see that a Casson tower of height five

contains a Casson handle within it. Along with Freedman’s extraordinary theorem

that any Casson handle is homeomorphic to an open 2–handle [Fre82, Theorem 1.1],

this implies that if a knot bounds a Casson tower T of height five, it has a topological

slice disk within T itself.

The question of whether a given Casson tower contains a topological slice disk for

its attaching curve can be rephrased in terms of whether a certain iterated, ramified

Whitehead double of the Hopf link is topologically slice in the 4–ball with standard

disks. (This relationship can be easily seen using Kirby diagrams and is indicated

in [Kir89, pp. 80–81].) Using this connection it is easy to infer that not all Casson

towers of height one or two contain topological disks. The simplest Casson towers of

height three and four (i.e. with a single kink at each stage) contain topological slice

disks for the attaching curve [Fre88], but this is not known for such towers in general.

It appears to be widely believed by experts that all Casson towers of height three and

higher contain topological slice disks for the attaching curve1.

Let T denote the set of all topologically slice knots. The above shows that if

a knot bounds a ‘tall enough’ Casson tower (height five is sufficient, height three

is conjectured to be enough), it is topologically slice. That is, C5 ⊆ T . Indeed,

a result of Quinn [Qui82, Proposition 2.2.4][Gom05, Theorem 5.2] shows that any

topologically slice knot bounds a Casson handle in B4. Therefore, C5 is equal to T .

If any Casson tower of height three contains a topological slice disk for its attaching

curve, C3 would be equal to T .

1The current literature is somewhat misleading on the status of this conjecture for general Casson
towers of height three and four.
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2.2 Filtrations of the knot concordance group

We end this chapter by recalling the definitions of several filtrations of C.

Definition 2.1 (Definition 2.2 of [CHH13]). For any n ≥ 0, a knot K ⊆ S3 is in Pn

(resp. Nn) and is said to be n–positive (resp. n–negative) if there exists a smooth,

compact, oriented 4–manifold V such that there is a properly embedded, smooth

2–disk ∆ ⊆ V with ∂∆ = K, ∂V = S3, [∆] trivial in H2(V, S
3) and

1. π1(V ) = 0

2. the intersection form on H2(V ) is positive definite (resp. negative definite)

3. H2(V ) has a basis represented by a collection of surfaces {Si} disjointly embed-

ded in the exterior of ∆ such that π1(Si) ⊆ π1(V −∆)(n) for all i.

Definition 2.2 ([COT03]). For any n ≥ 0, a knot K ⊆ S3 is in Fn and is said to be

n–solvable if there exists a smooth, compact, oriented 4–manifold V such that there

is a properly embedded, smooth 2–disk ∆ ⊆ V with ∂∆ = K, ∂V = S3, [∆] trivial

in H2(V, S
3) and

1. H1(V ) = 0

2. there exist surfaces {L1, D1, L2, D2, · · · , Lk, Dk} (with product neighborhoods)

embedded in V −∆ which form an ordered basis for H2(V ) such that

(a) for each i, Li and Di intersect transversely and positively exactly once

(b) Li ∩Dj, Li ∩ Lj, and Di ∩Dj are each empty if i 6= j

(c) π1(Li) ⊆ π1(V −∆)(n) for all i

(d) π1(Di) ⊆ π1(V −∆)(n) for all i.
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Remark 2.3. The above definition appears different from the original definition of n–

solvability in [COT03] at first glance, but the equivalence between the two definitions

is straightforward and we refrain from including the proof here. (A proof for the

equivalence between the corresponding definitions for the n–positive filtration can be

found in [CHH13, Proposition 5.2].)

The original definition of the n–solvable filtration in [COT03] was concerned with

the topological knot concordance group. Here, as in several recent works in the lit-

erature, we are using a version of the filtration for the smooth knot concordance

group.

If the Di in the above definition are not required to have product neighborhoods,

we get a slight enlargement of the n–solvable filtration, {Fodd
n }∞n=0.

Definition 2.4. A grope is a pair (2–complex, attaching circle). A grope of height

one is a compact, oriented surface Σ with a single boundary component, the attaching

circle. Gropes of greater height are defined recursively as follows. Let {αi, βi : i =

1, · · · , g} be disjointly embedded curves representing a symplectic basis for H1(Σ),

where Σ is a grope of height one. A grope of height n is obtained by attaching gropes

of height n− 1 along its attaching circle to each αi and βi in Σ.

Remark 2.5. The above gropes are sometimes referred to as ‘symmetric’ gropes and

therefore, the following construction is sometimes referred to as the symmetric grope

filtration.

Definition 2.6 ([COT03]). For any n ≥ 1, a knot K ⊆ S3 is in Gn if K extends to

a proper embedding of a grope of height n with its untwisted framing in B4. This

gives the grope filtration of C, {Gn}∞n=1.

Remark 2.7. Note that the above definition differs from our other formulations

in that there is an additional ‘framing’ requirement. We could instead include the
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framing requirement within the definition of a grope. The resulting 4–dimensional

object has been called a ‘Grope’ elsewhere in the literature (for example, in [Hor10]).

That is, a knot K is in Gn if it bounds a Grope in B4.

Definition 2.8. For any n ≥ 0, a knot K ⊆ S3 is in G2, n if K extends to a proper

embedding of a grope G of height two with its untwisted framing in B4 such that

pushoffs of each member of a symplectic basis for the first homology groups of the

second stage surfaces of G are in π1(B
4 −G)(n).

Remark 2.9. The groups G2, n defined above have not appeared in the literature

before to the author’s knowledge. However, several proofs of results related to the

grope filtration hold for the filtration {G2, n}∞n=0; this is perhaps unsurprising since it

is easily seen that Gn+2 ⊆ G2, n for each n. The following is an example of such a

result.

Theorem 2.10 (Theorem 8.11 of [COT03]). Gn+2 ⊆ G2, n ⊆ Fn for each n.

Proof. Suppose a knot K bounds a grope G in B4. If a curve on the second stage

surfaces bounds a grope of height n away from the first first two stages (call it G′),

the curve lies in π1(B
4 −G′)(n); as a result the first inclusion is clear.

The second inclusion follows very easily from a close reading of the proof of

[COT03, Theorem 8.11] (Theorem 1) where they show that Gn+2 ⊆ Fn. Briefly,

given a grope G of height n+ 2 bounded by a knot, they only use the first two stages

(call it G′) and the fact that a symplectic basis for H1 of each second stage surface is

in π1(B
4 −G′)(n).



Chapter 3

Proof of Theorem A

In this chapter we prove several results connecting the types of Casson towers bounded

by a knot K and membership within the many filtrations of C. Together these results

comprise Theorem A.

Proposition 3.1. The attaching curve of a Casson tower T of height n bounds a

properly embedded grope of height n within T .

Proof. A simple case is pictured in Figure 3.1, showing a neighborhood of the first

two stages of a Casson tower with a single kink in each stage. We will directly

and explicitly construct a grope bounded by the attaching curve (the leftmost curve

pictured), which will show how to proceed in the general case. The first stage of the

grope, Σ, is shown in Figure 3.2.

It is easy to see, abstractly, that both the meridian m and the longitude ` of the

first stage are homotopic to α1, the meridian of the dotted circle. We easily tube

‘inside Σ’ from m to α1, as shown in Figure 3.3. We also see an embedded annulus,

shown in Figure 3.3, cobounded by ` and a pushoff of α1. These two annuli intersect

exactly once (as desired) at the point of intersection of m and `.
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0

0

α1

α2

Figure 3.1: Proof of Proposition 3.1: A Kirby diagram for the first two stages of a
Casson tower with a single kink at each stage.

0

0

α1

α2

m

`

Figure 3.2: Proof of Proposition 3.1: Σ, the first stage of the grope, consists of the
‘obvious’ disk bounded by the attaching curve with a tube (dashed) along the dotted
circle. m and ` denote the meridian and longitude respectively.
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0

0
α2

Figure 3.3: Proof of Proposition 3.1: Surfaces connecting the meridian and longitude
of Σ to pushoffs of the meridian of the first-level dotted circle.

α1 and a pushoff of α1 bound disjoint surfaces in the complement of Σ, as follows.

Each surface consists of the core (or a pushoff of the core) of the attached 0–framed 2–

handle tubed along the next dotted circle, as shown in Figure 3.4. Since the 2–handle

is attached with 0–framing, the pushoffs do not intersect. These surfaces, along with

the annuli between m and α1, and ` and α1, form the second stage of our grope.

Constructing the third stage surfaces of the grope will indicate how to proceed

in subsequent stages. As before, we have various meridians and longitudes which

are abstractly homotopic to the meridian of the second dotted circle, α2. We will

construct disjoint annuli cobounded by these curves and pushoffs of α2, the meridian

of the second stage dotted circle, away from the first two stages. We can proceed

exactly as we did before to obtain annuli that are disjoint from each other, but

since the second stage surfaces are ‘nested’, (most of) the annuli intersect the second

stage surfaces. However, these intersections are particularly nice—they are boundary-

parallel circles in the annuli. We can push these intersections into the 4–ball to
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0

0
α2

Figure 3.4: Proof of Proposition 3.1: The second stage surfaces of the grope use the
annuli constructed previously (in Figure 3.3) and the 0–framed 2–handle attached to
the meridian of the first stage dotted circle. We use two copies of the core of the
attached handle in addition to the ‘obvious’ disk shaded gray in the picture, with a
tube about the second stage dotted circle. Notice that two copies of the tubes are
needed and they are nested.

get disjoint annuli. (Here is a good toy analogy. Consider two nested, standard,

unknotted tori in S3. Any meridional disk of the outer torus will intersect the inner

torus in a circle, but we can push the disk into the 4–ball in a neighborhood of the

circle to get a meridional disk for the outer torus which is disjoint from the inner

torus and still ‘mostly’ in S3.) Since α2 and its pushoffs bound disjoint surfaces as

before, we can construct all subsequent stages of the grope. It is easy to see, since

most of the grope is in 3–dimensional space, that the attaching curve bounds this

grope with untwisted framing.

If we had started with a more complicated Casson tower, we would have obtained

a more complicated grope through an identical process. The genus of the first stage

surface is equal to the number of kinks in the base-level kinky handle.
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The following corollary is immediate.

Corollary 3.2. For each n ≥ 1, Cn ⊆ Gn.

Corollary 3.3. Let T denote the set of all topologically slice knots. Then,

T ⊆
∞⋂
n=1

Gn.

Proof. This follows immediately from Proposition 3.1 and Quinn’s result that any

topological slice disk for a topologically slice knot contains a Casson handle [Qui82,

Proposition 2.2.4][Gom05, Theorem 5.2].

The above was previously known (without using Casson handles). Briefly, a topo-

logical slice disk for a knotK is a topologically embedded locally flat grope of arbitrary

height. Such a grope can be deformed to yield a smooth grope of arbitrary height

(some more detail may be found in [Cha14, Remark 2.19]).

Corollary 3.4. Cn+2 ⊆ C2, n and C±n+2 ⊆ C±2, n for all n ≥ 0.

Proof. Each member of a standard set of curves for the second stage of a Casson

tower of height n + 2 bounds a Casson tower of height n away from the first two

stages. Therefore, by Proposition 3.1, each such curve bounds a grope of height n

away from the first two stages.

Proposition 3.5. C2, n ⊆ G2, n ⊆ Fn for all n ≥ 0.

Proof. The second inclusion is from Theorem 2.10. For the first inclusion, suppose we

have a knot K in C2, n. That is, K bounds a Casson tower T ⊆ B4 of height two such

that the standard set of curves are in π1(B
4 − C)(n), where C is the core of T . By

Proposition 3.1, we know that K bounds a grope G of height two within T . In fact,

we see that the generators of the first homology groups of the second stage surfaces
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0

0
α

Figure 3.5: Proof of Proposition 3.6: A Kirby diagram of the first two stages of a
Casson tower with a single positive kink at each stage.

for G are exactly the meridians of the dotted circles of the second stage kinky disks

of T , i.e. they are exactly the standard set of curves for T , which are given to be in

π1(B
4 − C)(n). Therefore, K ∈ G2, n.

Proposition 3.6. C+
n+2 ⊆ Pn for all n ≥ 0. Similarly, C−n+2 ⊆ Nn for all n ≥ 0.

Proof. As before, we show the proof in the case where there is a single kink at each

stage of the Casson tower. The general case will follow analogously.

Figure 3.5 shows a Kirby diagram for the first two stages of a Casson tower T with

a single positive kink at each stage. We blow up at the kink in the first stage disk.

In our Kirby diagram, Figure 3.6, this introduces a +1–framed 2–handle, indicating

that the new manifold is diffeomorphic to T#CP(2). Since the blow up occurred in

the interior of T , we have an embedding T#CP(2) ↪→ B4#CP(2) (where earlier we

had an embedding T ↪→ B4). Let V denote B4#CP(2). A slice disk ∆ for K is

obvious in T#CP(2), shown shaded in gray in the figure (the attaching curve for the

2–handle pierces through it twice transversely). Since V is simply connected with
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0

0
α

+1

Figure 3.6: Proof of Proposition 3.6: After blowing up the first stage kink, an ‘obvious’
slice disk for the attaching curve can be seen.

positive definite intersection form all that remains to be done is to find a generator S

for H2(V ) ∼= Z such that π1(S) ⊆ π1(V −∆)(n). We will do so by finding a generator

S such that the generators of π1(S) bound gropes of height n in (T#CP(2))−∆.

For clarity, we describe how we obtain such an S in several steps. The näıve choice

of generator for H2(V ) is the core of the attached +1–framed 2–handle along with

the obvious disk bounded by it, shaded in gray in Figure 3.7. However, this clearly

intersects ∆. We can avert this problem by tubing along the attaching curve. While

this does yield a torus generator for H2(V ) disjoint from ∆, one of its H1–generators

is the meridian of the attaching circle (and therefore the knot!) We try to fix this by

surgering along the longitude of the torus using the obvious disks (pierced through by

the dotted circle in the diagram). The 2–sphere obtained intersect the dotted circle

and so we tube along it, as shown in Figure 3.8. This yields another torus generator

for H2(V ), but once again, one of its H1–generators is clearly the meridian of the

attaching circle. Fortunately, we can address this easily by noting that the meridian
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0

0
α

+1

Figure 3.7: Proof of Proposition 3.6: Finding generators of H2(V ).

of the present torus bounds a punctured torus. By cutting along the meridian and

gluing in two copies of the punctured torus, we finally obtain a generator S of H2(V )

in Figure 3.9. We claim that this is the desired surface generating H2(V ).

0

0
α

+1

Figure 3.8: Proof of Proposition 3.6: Finding generators of H2(V ).
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0

0
α

+1

Figure 3.9: Proof of Proposition 3.6: Finding generators of H2(V ).

Note that each member of the standard generating set for π1(S) is homotopic to

a meridian of the second stage dotted circle, α (i.e. the standard curve for the second

stage of T ) away from ∆. Since the standard curve bounds a Casson tower of height

n (and therefore a grope of height n) away from ∆, we see that π1(S) ⊆ π1(V −∆)(n).

But we can do better—we can show that the members of the standard generating

set for π1(S) themselves bound disjoint gropes away from the first two stages of T .

The only additional step needed is to find disjoint annuli connecting the generators

of π1(S) to α. This is the same construction as in the proof of Proposition 3.1 when

we constructed the third stage surfaces of a grope, and we omit it to avoid repetition.

The reader might ask why S constructed above is a generator of H2(V ). To see

this, start with the näıve choice of generator s, namely, the ‘obvious’ disk (shaded

in gray in Figure 3.7) capped off with the core of the +1–framed 2–handle. Take a

pushoff s̄ of s. s̄ and s intersect exactly once transversely with positive sign. Now

perform the various tubing operations described above on s̄—we can do so in the

complement of s. The resulting surface S will continue to have a single positive
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transverse intersection with s and therefore is in the same homology class as s.

For more complicated Casson towers, we apply the same process. The number of

generators of H2(V ) needed is equal to the number of kinks in the first stage of the

tower. For each kink in the first stage, the genus of the corresponding member of the

set of generators of H2(V ) is equal to the number of kinks in the associated second

stage kinky disk.

The above shows that C+
n+2 ⊆ Pn. For a knot K ∈ C−n+2 the kinks in the first

stage kinky disk would be negative and we would blow up using −1–framed 2–handles,

indicating a connected sum with CP(2). The rest of the construction is analogous.

Proposition 3.7. C+
2, n ⊆ Pn for all n ≥ 0. Similarly, C−2, n ⊆ Nn for all n ≥ 0.

Proof. The proof of our previous proposition did not truly require the Casson tower

beyond the first two levels. If the standard set of curves of a tower of height two is

known to be in the nth–derived subgroup of the fundamental group of the exterior of

the core of the first two stages, the remainder of the proof follows identically.

Corollary 3.8. C3 ⊆ C2, n for all n. Similarly, C+
3 ⊆ C+

2, n and C−3 ⊆ C−2, n for all n.

Proof. Suppose a knot bounds a Casson tower T of height three. Each member of a

standard set of curves for the second stage of T bounds a kinky disk away from C,

the core of the first two stages. Therefore, the curves must be null-homotopic away

from C and as a result, contained in π1(B
4 − C)(n) for all n.

The following is now an immediate corollary of the above result and Proposition

3.7, and reveals the inefficacy of Proposition 3.6 in studying the positive and negative

filtrations of C.

Corollary 3.9. C+
3 ⊆

⋂∞
n=0Pn. Similarly, C−3 ⊆

⋂∞
n=0Nn.



Chapter 4

Proof of Theorem B

Knots in C±1 can be completely characterized by the following theorem.

Theorem B. For any knot K, the following statements are equivalent.

(a) K ∈ C+
1 (resp. C−1 )

(b) K is concordant to a fusion knot of split positive (resp. negative) Hopf links

(c) K is concordant to a knot which can be changed to a ribbon knot by changing

only positive (resp. negative) crossings.

Remark 4.1. In [CL86, Remark 3.3, Lemma 3.4], Cochran–Lickorish showed that

if a knot can be changed to the unknot by only changing positive (resp. negative)

crossings, it bounds a kinky disk in the 4–ball with only positive (resp. negative)

kinks—very little further insight is needed to prove the more general statement (c)⇒

(a). We include it here for completeness.

This result should also be compared with a characterization of knots in a particular

subset of P0 given by Cochran–Tweedy in [CT].

Proof of Theorem B. Suppose K ∈ C+
1 , i.e. K bounds a kinky disk ∆ in B4 with all

kinks positive. As before we blow up each kink of ∆ with a CP(2) to resolve the
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Figure 4.1: Both the positive (left) and the negative (right) Hopf link can be fused
to yield the unknot.

singularities of ∆. Remove a tubular neighborhood of the core CP(1) within each

added CP(2). This results in a number of additional S3 boundary components which

intersect ∆ in positive Hopf links. We can tube these newly created S3’s together.

Since the tube acts like a 1–dimensional submanifold of a 4–manifold, it may be

considered to be disjoint from ∆. We excise the tube; the resulting 4–manifold W is

diffeomorphic to S3 × [0, 1]. By throwing away any additional components, we get a

smooth genus zero surface ∆ cobounded by K and a split collection of positive Hopf

links. (The Hopf links are split in the sense that they can be separated from one

another by a collection of disjoint, smoothly embedded 2–spheres.)

By an isotopy relative to the boundary, we can ensure that the height function on

W ∼= S3 × [0, 1] is Morse with respect to ∆ and that the maxima occur at the t = 1
5

level, the join saddles at the t = 2
5

level, the split saddles at t = 3
5

and the minima at

t = 4
5
. The intersection of ∆ with t = 1

2
is then a connected 1–manifold embedded in

S3×{1
2
} ∼= S3. Call this knot J . The portion of ∆ in S3× [0, 1

2
] gives a concordance

between K and J . We will show that J is a fusion of split positive Hopf links.

The portion of ∆ in S3 × [1
2
, 1] is almost what we need already. In particular, it

demonstrates J as a fusion of an unlink (from the minima of ∆) and a split collection
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of positive Hopf links. However, each component of the unlink can be considered as a

fusion of a positive Hopf link, as shown in Figure 4.1. To be more specific, we can use

an arc disjoint from ∆ to extend each minimum down to S3×{ε}. Since the minima

form an unlink we can keep them split from one another and the Hopf links. Within

S3 × [ε, 1], we can use saddles to split the unknotted components into positive Hopf

links. This shows that J is a fusion of a collection of split positive Hopf links, and

therefore (a)⇒(b).

Now suppose that K is concordant to a fusion knot of split positive Hopf links.

Since a positive Hopf link can be changed to an unlink by changing a positive crossing,

(b)⇒(c) is clear.

Suppose that K is concordant to a knot which can be changed to a ribbon knot

by only changing positive crossings, i.e. there is a kinky annulus in S3 × [0, 1], with

only positive kinks, cobounded by K and a ribbon knot J . By appending the slice

disk for J , we get a kinky disk with only positive kinks bounded by K in B4.

The corresponding statements for C−1 can be proved by an entirely analogous

argument.

Using an almost entirely identical argument, we can prove the following proposi-

tion.

Proposition 4.2. For any knot K, the following statements are equivalent.

(a) K bounds a kinky disk with p positive and n negative kinks.

(b) K is concordant to a fusion knot of p positive Hopf links, n negative Hopf links

and an unlink

(c) K is concordant to a knot that can be changed to a ribbon knot by changing p

positive and n negative crossings.
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4.1 Positivity of knots

Theorem B involves several notions which might reasonably be referred to as ‘posi-

tivity’ for knots. It is instructive to study how they are related to other such notions

which are well-established in the literature. Let us start by listing some of these

concepts.

1. K is the closure of a positive braid

2. K has a projection where all crossings are positive

3. K is strongly quasipositive

4. K is quasipositive

5. κ−(K) = 0

6. K bounds a kinky disk in B4 with only positive kinks, i.e. K ∈ C+
1

7. K is concordant to a knot that can be changed to a slice knot by changing only

positive crossings

8. K is concordant to a fusion knot of a split collection of positive Hopf links

9. K ∈ P0

In the list above, κ− denotes ‘negative kinkiness’, a smooth concordance invariant

defined by Gompf in [Gom86]. The terms quasipositivity and strong quasipositivity

are due to Rudolph; see [Rud05] for a thorough exposition.

The known relationships between the above notions of positivity of knots are

summarized in Figure 4.2. (1) ⇒ (2) trivially, but there are examples of knots

with positive projections which are not closures of positive braids. Rudolph showed

in [Rud99] that knots with positive projections are strongly quasipositive. Strongly
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closure of a
positive

braid

has a
positive

projection

strongly
quasipositive

quasipositive

κ−(K) = 0

bounds a
kinky disk
with only

positive kinks

K ∈ P0

concordant to a
knot which can

be sliced by
changing only

positive crossings

concordant to a
fusion knot of

positive Hopf links

Figure 4.2: Known relationships between some notions of positivity of knots.

quasipositive knots are obviously quasipositive by definition. However, Baader showed

in [Baa05] that there exist quasipositive knots that are not strongly quasipositive1.

(5) and (6) are equivalent by the definition of κ− and (6), (7) and (8) are equivalent

by Theorem B. (5) implies (9) as discussed previously, by ‘blowing up’ at the kinks

of a kinky disk. Any knot with a positive projection bounds a kinky disk with only

positive kinks; this is so since it can be unknotted by changing only positive crossings.

Therefore, (2) implies (6). However, it is known that knots with positive projections

necessarily have (strictly) negative signatures [CG88, Prz89, Tra88] while knots (such

as the figure eight knot) with zero signature may bound kinky disks with only positive

kinks. As a result, (6) does not imply (2).

1These examples were pointed out by Steven Sivek in response to a question posed by the author
on MathOverflow [Siv13].
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Rudolph showed that one can construct a strongly quasipositive knot with any

given Seifert pairing [Rud83, Rud05]. This implies that we can find strongly quasi-

positive knots with positive signature, which obstructs membership in P0 by [CHH13,

Proposition 1.2]. Membership in P0 does not imply strong quasipositivity, or even

quasipositivity. As pointed out in [Rud89, Remark 4.6], a non-slice knot which is its

own mirror image (such as the figure eight knot, which lies in P0) cannot be quasipos-

itive. On the other hand, it is true that if K is strongly quasipositive, then K /∈ N0,

as follows. Livingston proved in [Liv04]1 that if K is strongly quasipositive, then

g(K) = g4(K) = τ(K), where g4 denotes smooth 4–genus and τ denotes Ozsváth–

Szabó [OS03] and Rasmussen’s [Ras03] smooth concordance invariant. Therefore,

any non-trivial, strongly quasipositive K has τ(K) > 0, which obstructs membership

in N0 by [CHH13, Proposition 1.2]. Collectively this paragraph addresses a question

posed in Section 3 of [CHH13], seeking the relationship between strong quasipositivity

and P0.

The relationships summarized in Figure 4.2 lead to the natural question of whether

membership in P0 implies any of the equivalent notions (5)–(8). This seems unlikely

to be true, but we do not have a counterexample at present.

1Livingston’s result is not stated in terms of strong quasipositivity. The equivalence of Liv-
ingston’s conditions and strong quasipositivity is pointed out by Hedden in the introduction to
[Hed10]



Chapter 5

Examples and properties

Example 5.1. It is well-known that any knot can be changed to the unknot by

changing crossings (the minimum number of crossings that need to be changed is the

unknotting number of a knot). By tracing the homotopy corresponding to the crossing

changes, we see that every knot bounds a kinky disk if we impose no restrictions on

the signs of the kinks, i.e. every knot lies in C1.

Example 5.2. Theorem B shows that membership in C±1 is harder. From Proposition

1.2 in [CHH13] we know that the signs of various well-known concordance invariants

obstruct membership in P0 and N0. Since C+
1 ⊆ P0 and C−1 ⊆ N0, they also obstruct

membership in C+
1 and C−1 . For example, if τ(K) < 0, K /∈ P0, and therefore,

K /∈ C+
1 . Similarly, K /∈ C+

1 if the Levine–Tristram signature of K is strictly positive,

or s (K) < 0. Using Theorem B, we can then see that the signs of these invariants

also obstruct when a knot can be changed to a slice knot by changing only positive

or negative crossings. Results of this nature were proved by Cochran–Lickorish and

Bohr in [CL86] and [Boh02] respectively.

Example 5.3. By Theorem B, any knot which can be changed to a slice knot by

changing positive (resp. negative) crossings lies in C+
1 (resp. C−1 ). In particular this
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n

Figure 5.1: The twist knots T−n . The box with a number ‘n’ inside should be inter-
preted as n full twists.

implies that any knot with unknotting number (or even slicing number) one, lies in

either C+
1 or C−1 .

Let T+
n denote the positively-clasped twist knots with n twists and T−n the negatively-

clasped twist knots (see Figure 5.1). Clearly, each T±n can be unknotted by changing

one of the crossings at the clasp and therefore, T+
n ∈ C+

1 and T−n ∈ C−1 for all n. On

the other hand, for positive n, the knot T+
n can be unknotted by changing n negative

crossings (undoing the n twists) and therefore, T+
n ∈ C+

1 ∩C−1 for positive n. Similarly,

T−n ∈ C+
1 ∩ C−1 for negative n. Note that it is easy to see that T+

n is a fusion of a

positive Hopf link. However, since T+
n ∈ C−1 for positive n, such a knot must also be

concordant to a fusion of negative Hopf links by Theorem B—an example is shown

in Figure 5.2.

Example 5.4. Example 4.5 of [CHH13] shows that Wh−0 (LHT ) /∈ P0, where LHT

Figure 5.2: The knot T+
3 can be obtained as a fusion of a single positive Hopf link,

or as a fusion of three negative Hopf links. Fusion bands are shown in gray.
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is the left-handed trefoil and Wh−0 (·) denotes the negatively clasped zero-twisted

Whitehead double. Similarly Example 4.6 in [CHH13] shows that if p < 0, q > 0,

and r > 0 are odd and pq + qr + rp = −1, then the pretzel knots K(p, q, r) /∈ P0.

Therefore, since C+
1 ⊆ P0, none of these knots can bound a kinky disk with only

positive kinks and by Theorem B none of these knots can be changed to a slice knot

by changing only positive crossings.

Example 5.2 showed that C+
1 and C−1 have non-trivial intersection. However, they

are distinct sets, as we see below.

Proposition 5.5. C+
1 6= C−1 .

Proof. Corollary 2 of [Boh02] shows that if K is concordant to a non-trivial strongly

quasipositive knot, then κ+(K) > 0. This implies that K /∈ C−1 . However, several

strongly quasipositive knots are in C+
1 . For instance, any knot which is a closure of

a positive braid (and therefore contained in P0) is strongly quasipositive. In fact,

Rudolph showed that any knot with a positive projection is strongly quasipositive

[Rud99]. This shows that all knots with positive projections are in C+
1 − C−1 .

Alternatively, Gompf showed that there exist non-trivial knots with kinkiness

(0, n), with n 6= 0 in [Gom86]. These knots are clearly in C−1 − C+
1 .

There also exist knots which are is neither C+
1 nor C−1 , as follows. Recall that

C1 = C.

Proposition 5.6. C1 6= C+
1 ∪ C−1 .

Proof. As we saw above, by [Boh02, Corollary 2], any strongly quasipositive knot K

has κ+(K) > 0 and therefore K /∈ C−1 . However, Rudolph showed in [Rud83, Rud05]

that one can construct a strongly quasipositive knot with any given Seifert pairing.

As a result, we can find a strongly quasipositive knot K with positive Levine–Tristram

signature. By Proposition 1.2 of [CHH13], K /∈ P0 and therefore, K /∈ C+
1 .
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Clearly, any of the knots guaranteed by the above proposition must have both

κ+(K) and κ−(K) non-zero and in fact, this condition characterizes all knots in

C1 −
(
C+
1 ∪ C−1

)
.

Proposition 5.7. C2 6= C1, C+
2 6= C+

1 and C−2 6= C−1 .

Proof. The figure eight knot 41 in contained in both C+
1 and C−1 since it can be

unknotted by changing a single positive or negative crossing. However, we know that

Arf(41) 6= 0 and so by Corollary 1, it cannot bound a Casson tower of height two.

Therefore, 41 /∈ C2. Since C±2 ⊆ C2 the result follows.

Of course, any knot with Arf (K) = 1 lies in C1−C2 by Corollary 1, since C1 = C.

Similarly, any knot K with Arf(K) = 1 and unknotting number one lies in either

C+
1 − C+

2 or C−1 − C−2 .

The above result shows that while the figure eight knot bounds a kinky disk with

a single positive (resp. negative) kink, it cannot be extended to a Casson tower of

height two. In fact, by Corollary 1, the figure eight knot does not bound any height

two Casson tower, regardless of the number (and sign) of kinks at the first stage.

Corollary 5.8. C+
2, 0 ≡ C+

2 6= P0. Similarly, C−2, 0 ≡ C−2 6= N0.

Proof. This follows immediately from the previous proposition since C+
1 ⊆ P0 and

C−1 ⊆ N0.

Recall that T±n denotes the twist knot with n twists, where the superscript denotes

the sign of the clasp (see Figure 5.1).

Proposition 5.9. For even n, T+
n ∈ C+

2, 0 and T−n ∈ C−2, 0.

Notice that by Corollary 1, knots in C±2, 0 must have zero Arf invariant. As a result,

for odd n, T±n cannot be contained in C±2, 0, since Arf (T±n ) ≡ n mod 2.highlight

examples more
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n n n

t > t0 + ε t = t0 + ε t = t0

Figure 5.3: Homotopy showing the base-level kinky disk bounded by T±n . α, the
standard curve to which the second-level kinky disk should be attached, is shown
dotted.

Proof of Proposition 5.9. Let K denote T±2k for some k ∈ Z. K bounds an obvious

kinky disk D1 in B4 with a single positive (resp. negative) kink, corresponding to

changing one of the two crossings at the clasp. The standard curve, which would

need to bound a second stage kinky disk, is an unknot which can be seen as the ‘core’

curve of K, shown in Figure 5.3. Call this curve α. As depicted in the figure, α is

‘mostly’ contained in a single slice of B4 (with respect to the radial function). Let

this radius be denoted t0. D1 is contained in the region of B4 with radii ≥ t0, and as

a result, we see that α bounds an embedded disk D̃2 away from D1, on the side of B4

with radius < t0. However, a regular neighborhood of D̃2 does not have the correct

framing—it is twisted 2k times.

Around the (single) kink in D1, we have a linking torus T , which intersects D̃2

transversely once. For a precise description of the linking torus at the transverse

point of intersection of two planes, see [FQ90, p. 12]. All we will need here is that

the meridian and longitude of the linking torus are respectively meridians of the

intersecting planes. Therefore, in our case, they are both meridians of D1.

Assume T is oriented such that T · D̃2 = −1. Take k parallel (non-intersecting)

copies of T . We can smooth the intersection between each copy of T and D̃2 to

obtain a connected surface bounded by α. The embedded surface Σ thus obtained is

homologically D̃2 + kT . The smoothing process is described in [GS99, p. 38] and can

be performed without introducing any self-intersections of Σ.
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n

η

Figure 5.4: The curve η.

The framing of Σ is the homological self-intersection number and changes by

2D̃2 · kT = −2k. We now have a correctly framed surface of genus k bounded by α.

We will now use surgery to obtain a kinky disk bounded by α.

Assume k = 1 for the moment. Then Σ is a genus one surface. Consider the

(1,−1) curve on Σ. The meridian and longitude of Σ are the same as the meridian

and longitude of T , and therefore the (1,−1) curve on Σ is isotopic to the curve η

shown in Figure 5.4, in the exterior of D1. For larger values of k we can find a set

of curves, shown in Figure 5.5, which are each isotopic to η ⊆ S3 away from D1.

These curves are the images of the (1,−1) curves on T in Σ—this is easily seen from

the construction of Σ. Surgering along these curves (away from D1) would give us a

(correctly framed) second stage kinky handle and complete the proof. The resulting

disk will have the correct framing since surgery does not change framing.

η bounds a genus one surface away from D1 as shown in Figure 5.6. The longitude

of this surface is isotopic (away from D1) to the standard curve of D1, namely α. We

know that α bounds a disk, D̃2, away from D1. Surgering using parallel copies of D̃2,

we see that η bounds an immersed disk δ away from D1. Note that δ will necessarily

Figure 5.5:
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n

η

Figure 5.6: The curve η bounds a surface.

intersect D̃2 (and therefore Σ).

We can use δ to surger Σ when k = 1. For larger values of k, we will need multiple

parallel copies of δ, which will necessarily intersect one another. However, as long as

there are no intersections with D1, we still create a Casson tower of height two as

desired1.

Recall that Wh±n (K) denotes the n–twisted Whitehead double of the knot K,

where the superscript indicates the type of clasp. By a very similar argument as

above, we can show the following.

Proposition 5.10. For even n and any knot K, Wh+
n (K) ∈ C+

2, 0 and Wh−n (K) ∈ C−2, 0.

Proof. The argument in this case differs from the proof of the previous proposition

only in a few details. As before, Wh±2k(K) bounds a first stage kinky disk D1 with a

single positive (resp. negative) kink. The standard curve α is no longer an unknot

as in the previous case, but has the knot type of K. However, any knot K bounds

a (correctly framed) kinky disk in the 4–ball, since it can be unknotted by changing

crossings (see Example 5.1). However, the n twists in the Whitehead doubling oper-

ator used imply that a regular neighborhood of the näıve choice of second stage disk,

D̃2, is twisted 2k times. Fortunately, as before, we can tube with the linking torus at

1The author is grateful to Robert Gompf for suggesting a key step in the proof for Proposition
5.9.
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the (single) kink in the first stage disk, and surger repeatedly using copies of D̃2 to

obtain a Casson tower of height two. The proof is identical to the proof of Proposition

5.9 apart from the fact that D̃2 is no longer embedded. Several new intersections are

created as before, but they are all in the second stage kinky disk.

Corollary 5.11. C+
2, 0 6= C+

2, 1, C−2, 0 6= C−2, 1, and C2, 0 6= C2, 1.

Proof. The knots T+
n and Wh+

n (K) are algebraically slice exactly when n = l(l + 1)

with l ≥ 0 [CG86]. (Similarly, knots T−n and Wh−n (K) are algebraically slice exactly

when n = −l(l + 1) with l ≥ 0.) This fact, together with Proposition 5.9, yields

infinitely many knots in C+
2, 0 − C+

2, 1, C
−
2, 0 − C−2, 1, and C2, 0 − C2, 1. This is because, by

Corollary 2, knots in C±2, 1 or C2, 1 must be algebraically slice.

Corollary 5.12. C+
3 6= C+

2 , C−3 6= C−2 , and C3 6= C2.

Proof. Since C±3 ⊆ C±2, 1 and C3 ⊆ C2, 1, this follows immediately from the previous

corollary.

From the proof of Proposition 5.10, it is tempting to speculate that iterated twisted

Whitehead doubles bound arbitrarily high Casson towers, i.e. if a knot K bounds a

Casson tower of height p, Wh±n (K) bounds a Casson tower of height p + 1 for any

n. Unfortunately, this does not follow when n 6= 0. In particular, if our wishful

thinking were correct, twist knots would bound arbitrarily high Casson towers (since

they are twisted doubles of the unknot, which bounds arbitrarily high Casson towers).

However, we know this is not true since some twist knots are not algebraically slice

and therefore, do not bound Casson towers of height three.

In the n = 0 case, we get the following result.

Proposition 5.13. For any knot K ∈ Ck,

Wh+
0 (K) ∈ C+

k+1
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and

Wh−0 (K) ∈ C−k+1.

Proof. If a knot J bounds a Casson tower of height k, Wh±0 (J) bounds a Casson

tower of height k + 1, with a single kink in the lowest level with sign corresponding

to the sign of the clasp of the pattern used. The result follows.

Remark 5.14. Note that the above proposition implies that for any knot K ∈ Ck,

Wh+
0 (Wh±0 · · ·Wh±0︸ ︷︷ ︸

n−1 times

(K)) ∈ C+
n+k

and

Wh−0 (Wh±0 · · ·Wh±0︸ ︷︷ ︸
n−1 times

(K)) ∈ C−n+k.

The following is an immediate corollary of the above proposition, Theorem A,

Proposition 5.10 and Corollary 3.8.

Corollary 5.15. For any even k and any knot K,

Wh+
0 (Wh±k (K)) ∈ C+

3 ⊆
⋂
n

C+
2, n ⊆

⋂
n

Pn

and

Wh−0 (Wh±k (K)) ∈ C−3 ⊆
⋂
n

C−2, n ⊆
⋂
n

Nn.

The above is related to Corollary 3.7 in [CHH13], which shows that if J ∈ P0 then

Wh±0 (J) is in
⋂

nPn. For any K and n, we know that Wh+
n (K) ∈ P0, and therefore it

was already known that Wh+
0 (Wh+

n (K)) ∈
⋂

nPn. However, it is not generally true

that Wh−n (K) ∈ P0 for any K. For example, Wh−0 (LHT ) /∈ P0.
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Generalization to links

The definitions of Cn, C±n , C2, n and C±2, n can be naturally generalized to the context of

links. Since the connected sum operation is not well-defined on links, we have to con-

sider the string link concordance group of m–component string links, denoted C(m),

under the concatenation operation. For L ∈ C(m), let L̂ denote the m–component

link obtained by taking the closure of L.

Definition 1′. An m–component string link link L is said to be in Cn(m) if L̂i, the

components of L̂, bound disjoint Casson towers of height n.

Definition 2′. An m–component string link L is said to be in C2, n(m) if L̂i, the

components of L̂, bound disjoint Casson towers Ti of height two such that each

member of a standard set of curves for each Ti is in π1(B
4 − ti Ti)

(n).

Definition 3′. An m–component string link link L is said to be in C+
n (m) (resp.

C−n (m)) if L̂i, the components of L̂, bound disjoint Casson towers of height n such

that all the kinks in the first stage kinky disks are positive (resp. negative).

Definition 4′. An m–component string link L is said to be in C+
2, n(m) (resp. C−2, n(m))

if L̂i, the components of L̂, bound disjoint Casson towers Ti of height two such that all
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the kinks in the first stage kinky disks are positive (resp. negative) and each member

of a standard set of curves for each Ti is in π1(B
4 − ti Ti)

(n).

There are similar definitions for the grope filtrations Gn(m) and G2, n(m), and the

n–solvable filtration Fn(m) for C(m) which we omit for the sake of brevity—they are

identical to the definitions in the case of knots, except that the components of the link

are required to bound disjoint disks in 4–manifolds of the relevant flavor. Positive

links, i.e. links in P0(m), have been studied by Cochran–Tweedy in [CT].

Since all of our arguments in Chapter 3 take place within Casson towers, the

results generalize easily to links. Therefore, we obtain the following theorem.

Theorem A′. For any n ≥ 0, and m ≥ 1,

(i) Cn+2(m) ⊆ Gn+2(m) ⊆ Fn(m)

(ii) C2, n(m) ⊆ G2, n(m) ⊆ Fn(m).

(iii) C+
n+2(m) ⊆ C+

2, n(m) ⊆ Pn(m)

(iv) C−n+2(m) ⊆ C−2, n(m) ⊆ Nn(m)

Note that C+
1 (m) ⊆ P0(m) and C−1 (m) ⊆ N0(m), even in the case of links. Using

a near-identical proof to that of Theorem B, we obtain the following.

Theorem B′. For any m–component string link L, the following statements are equiv-

alent.

(a) L ∈ C+
1 (m) (resp. C−1 (m))

(b) L̂ is concordant to a link each of whose components is a fusion knot of a split

collection of positive (resp. negative) Hopf links
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(c) L̂ is concordant to a link each of whose components can be changed to a rib-

bon knot by changing only positive (resp. negative) crossings (within the same

component).

Recall that any knot K lies in C1 since it can be unknotted by changing some

number of crossings. However, it is not true that every m–component link lies in

C1(m) as we see below.

Proposition 6.1. If an m–component string link L lies in C1(m), then L̂ is link

homotopic to the m–component unlink and the pairwise linking numbers of L̂ are

zero.

Proof. Since L ∈ C1(m), the components of L̂ bound disjoint immersed disks in B4.

By following the proof of Theorem B′, we see that L̂ is concordant to a link M̂

which can be changed to a ribbon link by changing some number of crossings, i.e.

M̂ is link homotopic to a ribbon link. However, we know from [Gif79, Gol79] that

link concordance implies link homotopy. Since L̂ is concordant to M̂ and any m–

component ribbon link is concordant to the m–component unlike, we have that L̂ is

link homotopic to M̂ which is link homotopic to a ribbon link which is link homotopic

to the m–component unlink.

The linking number between two simple closed curves in S3 can be computed as

the signed intersection number between 2–chains bounded by them in B4 [Rol90, p.

136]. Since the components of L̂ bound disjoint 2–chains (in particular, immersed

disks) in B4 all the pairwise linking numbers are zero.

As in Corollary 3.3, we obtain the following result.

Corollary 3.3′. Let T (m) denote the set of all topologically slice string links with m



50

components. Then, for any m ≥ 1,

T (m) ⊆
∞⋂
n=1

Gn(m).

As we mentioned in Chapter 2, the groups G2, n(m) have not appeared previously

in the literature, but several results relating to the grope filtration carry over easily.

In the case of links, this can be seen in context of k–cobordism of links ([Coc90,

Definition 9.1][Sat84]) as follows. We reference the corresponding results from [Ott12]

regarding the grope filtration below since our proofs are essentially the same.

Proposition 6.2 (Proposition 6.4 of [Ott12]). If L ∈ G2, n(m) then L is 2n+1–

cobordant to a slice link, i.e. L is null 2n+1–cobordant.

Proof. The proof is essentially identical to the proof of Proposition 6.4 of [Ott12],

which says that if L ∈ Gn+2(m) then L is null 2n+1–cobordant. Her proof only uses

the fact that each member of a symplectic basis for the first stage surfaces (call

them Σi) of the gropes lies in π1(B
4 − ti Σi), which clearly still holds for a link in

G2, n(m).

Corollary 2.2 of [Lin91] states that if a link L is null k–cobordant, then Milnor’s

µ–invariants of L with length less than or equal to 2k vanish. Therefore, we obtain

the following corollary.

Corollary 6.3 (Corollary 6.6 of [Ott12]). If L ∈ G2, n(m), then µL(I) = 0 for |I| ≤

2n+2.

Since C2, n(m) ⊆ G2, n(m) for all n and m, we also obtain the following.

Corollary 6.4 (Corollary 6.6 of [Ott12]). If L ∈ C2, n(m), then µL(I) = 0 for |I| ≤

2n+2.
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−1

Figure 6.1: The above link is in P0(4) but not in either C±1 (4). The strands going
through the box marked with−1 are given a full negative twist relative to one another.

Proposition 6.5. For m ≥ 2n+2 and n ≥ 0,

(a) Z ⊆ Fn(m)/G2, n(m),

(b) Z ⊆ Pn(m)/G2, n(m),

(c) Z ⊆ Nn(m)/G2, n(m).

Proof. The proof of (a) is very closely related to Otto’s proof of [Ott12, Corollary 6.8]

in light of Corollary 6.3. Here is a short sketch. Let H denote the positive Hopf link,

and BDi(H) its ith iterated Bing double (where each component of a link gets Bing

doubled at each step). Otto shows that BDn+1(H) ∈ Fn for each n. Work of Cochran

[Coc90, Theorem 8.1] then shows that µBDn+1(H)(I) = 1 for some I of length 2n+2

with distinct indices (note that BDn+1(L) has 2n+2 components) and additionally,

all µ–invariants of smaller length vanish. Corollary 6.3 shows that BDn+1(H) ∈ Fn/

G2, n for each n. Since the first non-zero µ–invariant is additive under concatenation

of string links [Coc90, Theorem 8.13][Orr89], we see that BDn+1(H) generates an

infinite cyclic subgroup of Fn(m)/G2, n(m).

We give the proof for (b); taking concordance inverses of these examples will

complete the proof for (c). Consider the link L given in Figure 6.1. We see that

L ∈ P0(m) in [CT], since it is obtained from an unlink by adding a generalized

positive crossing. By [CP12, Lemma 3.7], BDn(L) ∈ Pn(m). However, BDn(L) is
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link homotopic to BDn+1(H). Since µ–invariants with distinct indices are invariants

of link homotopy, we can complete the proof as in part (a).

In the case of links we also obtain the following additional results, which we are

currently unable to prove in the case of knots.

Proposition 6.6. P0(m) 6= C+
1 (m) and N0(m) 6= C−1 (m) for m ≥ 4.

Proof. Links demonstrating this inequality may be found in [CT, Example 4.13].

The link L shown in Figure 6.1 is link homotopic to the Bing double of a Hopf link

(this is easily seen by drawing a picture of both links; recall that the box in Figure

6.1 containing a ‘1’ indicates a full twist of all the strands passing through it) and

therefore, has non-zero µ(1234). This implies that L is not link homotopic to the

unlink, and therefore, by Proposition 6.1 is not in C+
1 (m). However, we see that

L ∈ P0(m) in [CT].

The mirror image of the link in Figure 6.1 is in N0(m)− C−1 (m).

We can actually do better by following the proof of Proposition 6.5, as follows.

Proposition 6.7. For m ≥ 2n+2 and n ≥ 0,

(a) Z ⊆ Fn(m)/C1(m),

(b) Z ⊆ Pn(m)/C+
1 (m),

(c) Z ⊆ Nn(m)/C−1 (m).

Proof. In the proof of Proposition 6.5, we demonstrated the existence of links which

are in Fn(m) (resp. Pn(m), Nn(m)) and have a non-zero µ–invariant with distinct

indices. These links are therefore not link homotopic to the unlink, and as a result,

by Proposition 6.1 are not contained in C1(m) (resp. C+
1 (m), C−1 (m)).
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