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1. Outline of the course

The field of 4-manifold topology was revolutionised in the 1980s by concurrent work of Freedman
and Donaldson, which established a vast disparity between the behaviour of smooth vs topological
4-manifolds. Soon after, Quinn expanded on Freedman’s techniques and established fundamental
tools for topological 4-manifolds, such as transversality. The goal of this mini-course is to
introduce the work of Freedman and Quinn, focussing primarily on topological 4-manifolds,
explaining the motivation and context for their work, illustrating the key tools and ideas, and
outlining potential future directions. My hope is to convince you of the following claims:

− The topological category is not as scary as you might think.
− We know a lot about topological 4-manifolds, but there is much more to be done.
− Smooth manifold topologists should be interested in these topics.
− Smooth manifold topologists can also contribute to answers to the big open questions for

topological 4-manifolds.

The results we will talk about in this mini-course have two flavours. Results of the first type, as
also explained in the Stipsicz lectures (ttss.math.gatech.edu/stipsicz-mini-course), provide the
context for several smooth results. For example, in order to find exotic smooth structures, we need
on one hand to know when two 4-manifolds are homeomorphic (for which we need topological
classification results) and on the other hand to know when they fail to be diffeomorphic (for
which we need smooth invariants). Results of this form include

− the h- and s-cobordism theorems for good groups
− the exactness of the surgery sequence for good groups
− classification results for 4-manifolds up to homeomorphism

Results of the second type enable us to use tools and techniques familiar from smooth contexts
in the topological setting. These are essential when working with topological 4-manifolds, and
include

− the annulus theorem, which implies that connected sum of (oriented) topological 4-
manifolds is well defined

− the immersion lemma and topological transversality, that continuous maps may be
approximated by maps with transverse intersections

− the existence of normal bundles for locally flat submanifolds

We will address results of both types in the mini-course.

1.1. Recorded talks. The recorded talks made available before the summer school will focus
on the following theorem.

Theorem 1.1. Let M and N be closed, smooth, oriented, simply connected 4-manifolds which
have the same intersection form. Then they are homeomorphic.

The proof has two steps. The first is a result of Wall, saying that such 4-manifolds are smoothly
h-cobordant. The second is Freedman’s result, that smooth, compact, simply connected h-
cobordisms are topologically trivial. The proof of Freedman’s result will use the disc embedding
theorem, in order to find Whitney discs along which one may perform the Whitney trick. All of
these notions will be explained.

https://ttss.math.gatech.edu/stipsicz-mini-course/
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Video titles.

− Lecture 1
a. Course overview
b. Proof of the high-dimensional h-cobordism theorem
c. Proof of Wall’s theorem and proof sketch for cork theorem

− Lecture 2
a. Visualising surfaces for the Whitney trick in dimension four
b. Proof of Freedman’s h-cobordism theorem, modulo the disc embedding theorem
c. Outline of proof of the disc embedding theorem

1.2. Live talks. The focus of the first two live talks will be the work of Quinn, establishing
fundamental tools in topological 4-manifold topology. While the recorded lectures prove that
every smooth homotopy 4-sphere is homeomorphic to S4, the first two live talks will explain how
to upgrade this result to be fully topological, i.e. that every topological homotopy 4-sphere is
homeomorphic to S4. A key technical result is handle smoothing, which we will use to show that
noncompact, connected topological 4-manifolds are smoothable.

The final talk will briefly describe related topics which we did not explore in the previous talks,
but focus on open problems and potential future directions.

1.3. Conventions.

− The symbol ' denotes homotopy equivalence
− The symbol ≈ denotes homeomorphism
− The symbol ∼= denotes diffeomorphism

1.4. Personnel, logistics, and resources. The TAs for this course are:

− Patrick Orson (ETHZ/MPIM) people.math.ethz.ch/∼porson
− Benjamin Ruppik (MPIM) ben300694.github.io

Aru is giving the lectures. Aru, Ben, Danica, Mark, and Patrick are typing up these lecture
notes, sometimes live during the talks.

Videos of the lectures and further resources will be made available at ttss.math.gatech.edu/ray-
mini-course. These notes will likely include details that were only outlined or outright skipped in
the lectures.

There are many exercises in these lecture notes. Green exercises are usually straightforward and
should be attempted if you are seeing this material for the first time. Prerequisites are courses in
introductory geometric and algebraic topology. Orange exercises are for those who are already
comfortable with some of the terminology; they may require nontrivial input from outside the
mini-course(s). Red exercises are challenge problems.

https://people.math.ethz.ch/~porson/
https://ben300694.github.io/
https://ttss.math.gatech.edu/ray-mini-course/
https://ttss.math.gatech.edu/ray-mini-course/
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2. h-cobordisms and Wall’s theorem

As mentioned above, the proof of Theorem 1.1 uses the notion of h-cobordisms. We begin this
section by defining h-cobordisms and proving Smale’s high-dimensional h-cobordism theorem, to
familiarise ourselves with the tools needed for the proof of Theorem 1.1.

Definition 2.1. LetMn
0 andMn

1 be smooth, compact, oriented n-manifolds. A smooth, compact,
oriented (n+ 1)-manifold with ∂W = −Mn

0 tMn
1 is said to be an h-cobordism from Mn

0 to Mn
1

if the inclusion maps ιi : Mi →W are homotopy equivalences.

You should think of this as saying that, up to homotopy, h-cobordisms are products, i.e. of the
form Mn

0 × [0, 1]. The following is a fundamental result in high-dimensional topology.

Theorem 2.2 (Smale [Sma61, Sma62]). Let n ≥ 5, and Wn+1 a smooth, compact, oriented,
simply connected h-cobordism from Mn

0 to Mn
1 . Then W ∼= M0 × [0, 1].

More specifically, there exists a diffeomorphism ϕ : W → M0 × [0, 1], where the restriction
ϕ|M0 : M0 →M0 is the identity map. Note that the restriction ϕ|M1 is a diffeomorphism from
M1 to M0.

As a straightforward corollary of the above, Smale proved the (category losing) high-dimensional
Poincaré conjecture, for which he won the Fields medal.

Corollary 2.3. Let n ≥ 6. Every smooth homotopy n-sphere is homeomorphic to Sn.

We now sketch a proof of Theorem 2.2. See also [Sco05, Chapter 1; Mil65; Sma60]. For more on
the high-dimensional Poincaré conjectures, see [Sta60,Zee62,New66].

Proof of Theorem 2.2. First we note that, as a smooth, compact manifold, W admits a handle
decomposition relative to M0, i.e. there is an identification of W with the smooth manifold
obtained by iteratively attaching finitely many handles to M0 × [0, 1] along M0 ×{1} via smooth
handle attaching maps, followed by smoothing corners.

For more on the existence of handle decompositions, see [GS99,Sco05,Mil65,Mil63]. Briefly, we
begin with a continuous map W → [0, 1], approximate it by a smooth function, then in turn by
a Morse function. Critical points of Morse functions correspond precisely to handles.

Remark 2.4. There are analogous notions of PL and topological handle decompositions, both
in the absolute and relative settings, where handles are attached along PL and topological
embeddings, respectively.

The main idea of the proof is to manipulate the handle decomposition of W until all the handles
cancel out. A (smooth) handle decomposition relative to M0 with no handles is, by definition,
diffeomorphic to the product M0 × [0, 1]. We will modify the handle decomposition by isotopies
of the handle attaching maps, including handles slides, and handle cancellation (more on these
moves in the Piccirillo lectures (ttss.math.gatech.edu/piccirillo-mini-course)). We will also need
the following indispensable tool from differential topology.

Theorem 2.5 (Submanifold transversality in the smooth category). Given smooth submanifolds
P p and Qq in an ambient manifold Wm, we may smoothly isotope P so that P and Q intersect
transversely, i.e. the dimension of P t Q is p+ q −m.

In particular, if p+ q < m, we may isotope P so that P ∩Q = ∅.

https://ttss.math.gatech.edu/piccirillo-mini-course/
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We now begin manipulating the handle decomposition of W relative to M0.

Step 1. Arrange that handles are attached in increasing order of index.

It is relatively straightforward to see that if the handle h′ is attached after the handle h, such
that the attaching sphere of h′ misses the belt sphere of h, then one may reorder the handle
attachment so that h is attached after h′. This follows since the attaching sphere for h′ can be
isotoped away from all of h, for example, by transporting radially away from the belt sphere.
Assume that h is a k-handle and h′ is an l-handle. Then the dimension of the belt sphere of
h is n − k (recall that we are working with (n + 1)-dimensional handles). The dimension of
the attaching sphere for h′ is l − 1. The manifold after attaching h is n-dimensional. So, up to
isotopy, we may assume that the intersection between the belt sphere of h and the attaching
sphere of h′ has dimension (n−k) + (l−1)−n = l−k−1. In particular, if k ≥ l, the intersection
can be assumed to be empty, and so we can reorder h and h′.

Step 2. Cancel all 0-handles (using 1-handles).

Recall that W is connected. Further, 0-handles are attached along their (empty) attaching region,
and the only handles with nonempty, disconnected attaching region are index 1. Hence, at least
one of the (finitely many) 0-handles must be attached to M0 × {1} by a 1-handle, i.e. there is a
1-handle h1 with one connected component of its attaching region in M0 × {1} and the other in
the belt sphere (∼= Sn) of the 0-handle h0. In particular, the attaching sphere of h1 intersects
the belt sphere of h0 precisely once, and the pair may be cancelled and removed from the handle
decomposition. This process reduces the number of 0-handles in the handle decomposition by
one, and by induction, we may assume that there are no 0-handles in the decomposition moving
forward.

Remark 2.6. A similar argument shows that a handle decomposition for a closed n-manifold can
be assumed to have a single 0-handle as well as, by turning the handle decomposition upside
down, a single n-handle.

Step 1. Trade 1-handles for 3-handles.

Let W2 ⊆W denote the union of M0 × [0, 1] and the 1- and 2-handles of W . Let M2 denote the
new boundary, so ∂W2 = −M0 tM2.

Consider the chain of inclusion induced maps π1(M0) → π1(W2) → π1(W ). Since W is built
from W2 by attaching handles of index strictly greater than 2, the second map is an isomorphism.
The composition is an isomorphism by hypothesis. Thus the first map is an isomorphism.

Fix a 1-handle h1 in W2, with core arc α. We claim that there is an arc β ⊆ M0 such that
γ := α ∪ β is a null-homotopic loop in W2. To see this, first choose any arc β′ with the same
endpoints as α. Then there is some loop δ ⊆M0 with the same image in π1(W2) as α ∪ β′, since
the inclusion induced map π1(M0)→ π2(W2) is surjective. The connected sum of β′ and δ−1 is
the desired β. By transversality, we assume that γ is disjoint from the attaching circles of all the
1- and 2-handles of W2 and then we push γ to the boundary M2.

By turning handles upside down, we see that the inclusion induced map π1(M2)→ π1(W2) is an
isomorphism. Thus γ bounds an immersed disc in M2, since it is null-homotopic in W2. Since
W2 has dimension ≥ 5 we can assume that γ bounds an embedded disc in M2. (This argument
also works in ambient dimension four, see Exercise 2.5).
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Thicken this disc to produce a cancelling 2-/3-handle pair. More precisely, insert a collar of
M2 × [0, 1] into the handle decomposition and thicken by pushing the interior of the disc into
this collar. The result is the addition of a single cancelling 2-/3-handle pair compatible with the
old handle decomposition. By the choice of γ the 2-handle cancels the 1-handle h1, leaving the
3-handle behind. Iterating this process allows us to trade all the 1-handles in W for 3-handles.

Step 2. Use the Whitney trick to cancel all the other handles.

This is the most important step in the argument. We will describe the Whitney trick in more
detail in Section 3, with a focus on dimension four. In high dimensions, it was introduced by
Whitney in [Whi44], where he used it to prove his embedding theorem, that every smooth,
compact d-manifold embeds in Rd.

Let M2 denote the n-manifold obtained from M0 after attaching all the 2-handles in W . Consider
the chain complex C∗(W,M0;Z) given by the (latest) handle decomposition:

C4 C3 C2 0∂4 ∂3

Since C2 is free and H∗(W,M0;Z) = 0, the matrix for ∂3 has the form ∂3 =
[
Ip×p
0p′×p

]
for some

p, p′, where Ip×p is the p× p identity matrix, and 0p′×p is the p′ × p matrix containing only zeros.
On the other hand, basis changes can be effected by handle slides (corresponding to elementary
row and column operations) and sign changes (corresponding to changing the orientation on
individual handles). Therefore, we may assume that for each 2-handle h2, there exists a unique
3-handle h3 so that the belt sphere of h2 and the attaching sphere of h3, both contained in M2,
intersect algebraically once. If these intersected precisely once geometrically, we would be able
to cancel the handles. The Whitney trick will tell us precisely why we may assume that these
submanifolds do in fact intersect geometrically once, up to isotopy.

Let P k and Qn−k be transversely intersecting, smooth, compact, connected, oriented submanifolds
ofMn

2 , whereM2 is simply connected, oriented, and n ≥ 5. Assume further that π1(M2r(P∪Q)) =
1. We skip the proof of this final assumption for the moment, but rest assured this can be
arranged in all the cases needed in the proof of Theorem 2.2. By our assumptions, we know
that the intersections between P and Q are isolated double points, each equipped with a sign.
Choose two intersection points of opposite sign. Choose arcs in P and Q joining the two double
points. The union of these two arcs is called a Whitney circle. A disc bounded by a Whitney
circle is called a Whitney disc. Since π1(M2r (P ∪Q)) = 1, there exists a Whitney disc D with
interior in the complement of P ∪Q, which may be further assumed to be embedded since n ≥ 5.
Under a condition on the normal bundle of D in M2 described in the next paragraph, we can
push P along D and over, as indicated in Figure 1, to geometrically cancel the two algebraically
cancelling intersection points. This process is called the Whitney trick or Whitney move.

Figure 1. The Whitney move. Left: A Whitney disc D is shown in light green.
Right: The Whitney move across D removes two intersection points.

We now describe the necessary condition on the normal bundle of D. Any embedded disc D with
boundary a circle C pairing points in P t Q determines a (k − 1)-dimensional sub-bundle of the
normal bundle νD⊆M2 |C of D restricted to C, by requiring that the sub-bundle be tangent to P
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and normal to Q. In order to perform the Whitney trick we need this sub-bundle over the circle
C to extend over the entire disc D. Standard bundle theory implies that the sub-bundle extends
if and only if it determines the trivial element in π1(Grk−1(Rn−2)), where the Grassmannian
Grk−1(Rn−2) is the space of (k−1)-dimensional subspaces in Rn−2. For n−k ≥ 3, it is known that
π1(Grk−1(Rn−2)) ∼= Z/2, and the nontrivial element corresponds to circles pairing intersection
points with the same sign. In our current situation, we have n ≥ 5 and k ≥ 2, so at lease one of
k or k′ = n− k will satisfy the codimension condition above. Since Whitney circles by definition
pair intersection points of opposite sign, the sub-bundle in question extends, and we can perform
the Whitney move.

To summarise, we previously knew that for each 2-handle h2 in W , there exists a unique 3-handle
h3 so that the belt sphere of h2 and the attaching sphere of h3, both contained in M2, intersect
algebraically once. By the Whitney trick, we can assume, that the belt sphere of h2 and the
attaching sphere of h3 intersect geometrically once, and therefore, all the 2-handles may be
cancelled (using a subset of the 3-handles). But now the process can be iterated, by cancelling
every k-handle using a subset of the (k + 1)-handles. At the end of this process, there will be
no remaining handles, showing that our original cobordism W is diffeomorphic to the product
M0 × [0, 1], as desired. �

Remark 2.7. While we only applied handle trading to address 1-handles, the technique can also
be used to tackle higher index handles. In [Wal71], Wall shows that by handle trading one can
reduce the relative handle decomposition of an h-cobordism to consist of handles in precisely
two consecutive indices. If we had used this method, we would have a particularly simple handle
chain complex in Step 4 of the above proof.

The techniques in the above proof will be relevant to multiple proofs moving forward. To begin
with, we now have most of the ingredients to prove Wall’s half of the proof of Theorem 1.1, which
we now state.

Theorem 2.8 (Wall [Wal64b, Theorem 2]). Let M and N be smooth, closed, oriented, simply
connected 4-manifolds with isomorphic intersection forms QM ∼= QN . Then M and N are
smoothly h-cobordant.

Proof. Since QM ∼= QN we know that σ(M# − N) = 0. Then by results of Rochlin and
Thom [Roc52,Tho54] (see also [Mel84; Kir89, Chapter VIII]), there exists a smooth, compact,
oriented W 5, with ∂W = −N tM . More specifically, this uses that the oriented bordism group
ΩSO

4
∼= Z. We will gradually modify W until it becomes an h-cobordism. However, we warn the

reader that, unlike the previous proof, the modifications will often change the diffeomorphism
type of W .

Step 1. Perform surgery on circles to modify W to be simply connected.

Choose smooth, embedded loops α1, . . . , αk in the interior of W which normally generate π1(W ).
Such a finite list of homotopy classes exists since W is compact, and they can be represented by
embedded loops because of transversality. Perform surgery on each αi, i.e. remove a neighbourhood
αi ×D4 and glue in D2 × S3 for each i, using that ∂(αi ×D4) ∼= S1 ×D4 = ∂(D2 × S3). The
framing does not matter – all we need is that the copies of D2 × {∗} glued in provide null
homotopies of the curves {αi}. By construction, the result, denoted V , is simply connected.

Step 2. Arrange that V is built by attaching only 2- and 3-handles along N × [0, 1].

We use the techniques from the proof of Theorem 2.2: Begin with a handle decomposition for V
relative to N . As before, cancel the 0-handles, and then perform handle trading to trade 1-handles
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for 3-handles. The latter step uses that π1(V ) is trivial. Now turn the handle decomposition
upside down, and repeat the two previous steps, then turn right side up again. The result is a
handle decomposition of V consisting only of 2- and 3-handles.

Step 3. Observe that the middle level M1/2 ∼= N#m(S2 × S2) ∼= M#m(S2 × S2) for some m.

LetM1/2 denote the 4-manifold obtained by attaching the 2-handles of V to N×{1} ⊆ N×[0, 1] ⊆
V . Observe that attaching a 2-handle changes the 4-manifold by surgery on an embedded circle;
in other words, for a single 2-handle attachment, we would have M1/2 = Nr (α×D3)∪ (D2×S2),
where α×D3 is the attaching region of the 2-handle, and D2 × S2 is the belt region. Since N is
simply connected, the attaching circles for the 2-handles are null-homotopic in N , and bound
embedded discs {∆i} (see Exercise 2.5). Summarising, M1/2 is produced from N by surgery on
trivial unknotted circles. This produces either S2×S2 or S2×̃S2 summands [Wal99, Lemma 5.5].
In each S2×S2 summand, the factor {∗}×S2 corresponds to the belt sphere {∗}×S2 ⊆ D2×D3

for the corresponding 2-handle. The factor S2 × {∗} is the union of the disc ∆i with a pushoff of
the core D2 × {∗} of the 2-handle. There are two possible framings for the 2-handle attachment,
corresponding precisely to the choice of S2 × S2 or S2×̃S2.

We now argue that it is possible to only have S2×S2 summands. In case that N is non-spin, we use
Exercise 2.10 [Wal64a, Corollary 1] (see also [GS99, Proposition 5.2.4]). Note also that a simply
connected 4-manifold is spin if and only if the intersection form is even [GS99, Remark 1.4.27(c)],
so N is non-spin if and only if M is non-spin, since QM ∼= QN and both are simply connected.
In the case that N (and equivalently M) is spin, we should have started the proof assuming W
is spin, using the fact that ΩSpin

4
∼= Z (see [Wal64b, Lemma 1; Kir89, Chapter VIII]), in which

case it is not hard to see that the 2-handles must be attached using the framing which produces
S2 × S2 summands.

The same argument applied to the upside down handle decomposition shows that M1/2 ∼=
M#m′(S2 × S2) where m′ is the number of 3-handles. Then we know that N#m(S2 × S2) ∼=
M1/2 ∼= M#m′(S2 × S2) and QM ∼= QN , so m = m′.

Step 4. Cut up and reglue with a twist.

In this final step, we will need the following result of Wall.

Theorem 2.9 (Wall [Wal64a, Theorem 2]). Let P be a smooth, closed, simply connected, oriented
4-manifold with QP indefinite. Then every automorphism of QP#S2×S2 can be realised by a
self-diffeomorphism of P#S2 × S2.

We want to cut V along the middle level M1/2 and then reglue using an appropriate self-
diffeomorphism, so that the result is an h-cobordism. Since V , M , and N are simply connected
(and the result of regluing will also be simply connected), it suffices to control the relative
homology of the result (see Exercise 2.1). Observe that QM1/2 is indefinite as long as m ≥ 1 (if
m = 0, there are no handles in V , and therefore, V is a (trivial) h-cobordism). Theorem 2.9 will
apply to M1/2 as long as m ≥ 2, or QN is indefinite and m ≥ 1. But we can arrange for m ≥ 2
by adding a cancelling 2-/3-handle pair to the handle decomposition of V . It remains only to
choose a suitable automorphism of QM1/2 .

Note that H2(M1/2;Z) ∼= H2(N ;Z)⊕ Z〈α1, α1, . . . , αm, αm〉, where each αi corresponds to the
core of a 2-handle and each αi to a belt sphere. Similarly, looking at the upside down handle
decomposition, we see that H2(M1/2;Z) ∼= H2(M ;Z) ⊕ Z〈β1, β1, . . . , βm, βm〉, where each βi
corresponds to the belt sphere of an upside down 3-handle (i.e. the attaching sphere of the
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3-handle) and each βi to the core of an upside down 3-handle. By hypothesis, there exists
an isomorphism ϕ : H2(M ;Z)→ H2(N ;Z) inducing the isomorphism QM ∼= QN . Extend ϕ to
ϕ : H2(M1/2;Z)→ H2(M1/2;Z) by setting βi 7→ αi for each i. Then ϕ(βi) = αi by unimodularity
of the intersection form, since, for example, 1 = Q(βi, βi) = Q(ϕ(βi), ϕ(βi))) = Q(αi, ϕ(βi)) =
Q(αi, αi).

Now consider the diffeomorphism ϕ̃ : M1/2 →M1/2 corresponding to ϕ provided by Theorem 2.9.
Specifically, let V2 denote the union of N × [0, 1] with the 2-handles of V , and let V3 denote
the union of the 3-handles of V . Let V ′ denote the result of gluing V2 and V3 along their
common boundary M1/2 via the diffeomorphism ϕ̃. By construction, for each 2-handle h2, there
exists a unique 3-handle h3 such that the belt sphere of h2 intersects the attaching sphere of h3
algebraically once; and all other attaching spheres of 3-handles intersect the belt sphere of h2
algebraically zero times. As a result, V ′ is an h-cobordism. �

The above proof also applies to the following theorem.

Theorem 2.10 (Wall [Wal64b, Theorem 3]). Let M and N be smooth, closed, simply connected,
oriented, h-cobordant 4-manifolds, then there exists m so that M#m(S2×S2) ∼= N#m(S2×S2).

Proof. An h-cobordism between spin 4-manifolds is in particular a spin cobordism. Apply Steps
2 and 3 of the previous proof. �

As a side note, we now have many of the tools necessary to prove the following theorem.

Theorem 2.11 (Curtis-Hsiang-Freedman-Stong [CFHS96], Matveyev [Mat96], Biz̆aca (unpub-
lished), see also Kirby [Kir96]). Let M0 and M1 denote smooth, closed, simply connected, oriented
4-manifolds and W a smooth, compact, oriented h-cobordism from M0 to M1. Then there exists
a compact sub-h-cobordism A ⊆W between Ai ⊆Mi such that

(i) Wr IntA is a product h-cobordism, i.e. there is a diffeomorphism
Wr IntA ∼= (M0r IntA0)× [0, 1],

restricting to the identity on M0r IntA0; and
(ii) A0 ∼= A1 is contractible.

Proof sketch. As before, we manipulate a handle decomposition of W until it consists only of 2-
and 3-handles. In this case we know that the belt spheres of the 2-handles and the attaching
spheres of the 3-spheres intersect so that H∗(W,M0;Z) = 0. The sub-h-cobordism A will contain
all the handles of W , so that the complement will necessarily be a product. However, A will
contain some more material, in particular enough material to make it contractible. �

As a corollary of the above theorem, we have the following cork theorem. See the Piccirillo
mini-course for more on corks.

Theorem 2.12 (Cork theorem). Any two smooth, closed, simply connected, homeomorphic
4-manifolds M0 and M1 are related by a cork twist, i.e. M1 is obtained from M0 by removing
some compact, contractible submanifold C ⊆M0 and regluing via a diffeomorphism.

Proof. By Theorem 2.8, there is a smooth h-cobordismW fromM0 toM1. Then by Theorem 2.11,
there is the required decomposition, where we use C = A0. �
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Exercises for Lecture 1

Introductory problems.

Exercise 2.1. Prove that a smooth, compact, oriented (n+ 1)-manifold with ∂W = −Mn
0 tMn

1 ,
with W , M0, and M1 simply connected is an h-cobordism if and only if H∗(W,M0;Z) = 0.

Exercise 2.2. Prove Corollary 2.3: Let n ≥ 6. Every smooth homotopy n-sphere is homeo-
morphic to Sn. Here a homotopy n-sphere is a manifold which is homotopy equivalent to Sn.
Does your proof give a diffeomorphism in the output? Look up in which dimensions the smooth
Poincaré conjecture is still open.

Exercise 2.3. Prove that modifying the handle attaching maps in a smooth handle decomposition
by smooth isotopy preserves the diffeomorphism type of the resulting manifold.

Exercise 2.4. Compute the fundamental group and homology of a smooth manifold in terms of
its handle decomposition.

Exercise 2.5. Let γ be an embedded circle in the interior of a smooth manifold Wm, with
m ≥ 4 and π1(W ) = 1. Prove that γ bounds an embedded disc in the interior of W .

Moderate problems.

Exercise 2.6. Formulate a definition of a relative h-cobordism between smooth n-manifolds
with diffeomorphic boundary.

Exercise 2.7. Prove that a topological 4-manifold has a topological handle decomposition if
and only if it is smoothable.

Exercise 2.8. Prove that relative handle decompositions exist.

Exercise 2.9. Can we use the Whitney trick to cancel 1-handles in Smale’s proof of Theorem 2.2?

Exercise 2.10. Let N4 be closed, smooth, simply connected, and non-spin. Then N#(S2×S2) ∼=
N#(S2×̃S2).

Challenge problems.

Exercise 2.11. Prove that (locally finite, smooth) handle decompositions exist for noncompact,
smooth manifolds.
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3. The Whitney trick in dimension four and the disc embedding theorem

3.1. Visualising surfaces in dimension four. Recall that by transversality, surfaces in a
4-manifold may be assumed, up to isotopy, to intersect in isolated double points. In this section,
we briefly describe how to visualise such intersections.

The model for intersections of surfaces in a 4-manifold is the intersection between the xy- and
zt-planes in R4, considered as the product of R3 with a copy of R given by a time coordinate t.
In Figure 2, we see R4 depicted as a sequence of R3 slices, each corresponding to a different value
of t. The xy-plane appears in the t = 0 slice. The zt-plane appears in each slice as a (vertical)
line. As we go backwards and forwards in time, these lines trace out the zt-plane. As expected,
the two planes intersect at precisely one point, namely the origin.

Figure 2. R4 is depicted as a sequence of R3 slices, each corresponding to a
different value of t. The blue plane in the central t = 0 slice depicts the xy-plane.
The red vertical lines trace out the zt-plane. The unique point of intersection of
the two planes is at the origin 0 ∈ R4, as expected. This picture provides a local
model for transverse intersections between surfaces in an arbitrary 4-manifold.

Transverse intersections between surfaces in an arbitrary 4-manifold are locally modelled by
Figure 2, that is, given surfaces P and Q in a 4-manifold M , and a point x ∈ P t Q, there is a
neighbourhood of x in M which is homeomorphic to R4, in which the planes P and Q appear as
in Figure 2.

Given surfaces P and Q intersecting transversely at a point x ∈ M , let B denote a small ball
around x, small enough so that Figure 2 models P and Q within B. The boundary ∂B is a copy of
S3. By transversality, we may assume that the intersection ∂B ∩ (P ∪Q) is a 1-manifold. Indeed,
this 1-manifold is a Hopf link in ∂B ∼= S3 (see Exercise 5.1 and Figure 3). Each component of
this link is a meridian of either P or Q. By definition, this means that each bounds a disc that
intersects precisely one of P or Q at a single point.

Figure 3. The blue circle and the red dots show the intersection between P ∪Q
(shown in blue and red respectively) and the boundary of a small ball centred at
the origin of the image. These circles form a Hopf link according to Exercise 5.1.
The blue circle is a meridian of Q and the red dots form a meridian of P .



12 KOSANOVIĆ, ORSON, POWELL, RAY, AND RUPPIK

Figure 4. The Clifford torus (purple) around a point x ∈ P t Q, for surfaces P
(blue) and Q (red) in a 4-manifold M .

Given surfaces P and Q intersecting transversely at a point x ∈M , the Clifford torus at x is the
product of the two meridians of P and Q mentioned above (see Figure 4).

3.2. The Whitney trick in dimension four. Recall that the Whitney trick was a key in-
gredient of the proof of Theorem 2.2. We want to understand to what extent the Whitney
trick is available in ambient dimension four. Consider the situation in Figure 5. Blue and red
depict oriented surfaces P and Q respectively, in some ambient, smooth, oriented 4-manifold M ,
intersecting in two points p and q with opposite sign. Choose an embedded arc γ in P from p
to q and an embedded arc δ in Q from p to q where the union C := γδ−1 bounds an embedded
disc D whose interior lies in the complement of f and g. In the ideal situation of Figure 5, these
three items are visible in the central t = 0 time slice.

Figure 5

Recall that P , Q, and M are all oriented. The orientations of P and Q determine an orientation
of TpM and TqM . Comparing with the given orientation on TpM and TqM (coming from the
orientation on M), we get a function sgn: {p, q} → {+,−}. The normal bundle of D in M
is a trivial 2-plane bundle. Fix an orientation on the fibres. Consider the following 1-plane
sub-bundle V of the normal bundle of D restricted to C = ∂D = γδ−1. The sub-bundle along γ
is given by the tangent bundle to P . This can be extended to a choice of sub-bundle along δ
that is normal to P and agrees with TP at p and q, since the intersections are transverse. This
is a trivial 1-plane bundle if and only if the function sgn: {p, q} → {+,−} is surjective, that is,
if and only if the signs of p and q are opposite.

Assuming that this is the case, choose a section s of the sub-bundle V . Since V is 1-dimensional,
the section s is determined up to multiplication by a continuous function S1 → Rr {0}. We
say that the Whitney disc D is framed if the section s extends to a nonvanishing section on
the normal bundle of all of D in M . The framing of the normal bundle of D restricted to ∂D,
induced by s and the chosen orientation on the fibres of the normal bundle, is called the Whitney
framing.

In general, the ‘tangent to one sheet, normal to the other’ principle gives the desired framing on C.
The framing induced by a candidate Whitney disc may differ from this; since π1(Gr1(R2)) ∼= Z,
we have a twisting number or relative Euler number in Z.
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Extend the Whitney disc D very slightly beyond its borders; more precisely, extend γ slightly
beyond p and q in P and push δ out along the radial direction of TD|δ i.e. the direction orthogonal
to Tδ. Now consider the disc bundle DE ∼= D2 ×D1, which is the sub-bundle of the normal
bundle of (the extended version of) D determined by the section s, where D coincides with the
zero section. The boundary of DE is a 2-sphere, with ∂(DE)∩ P a neighbourhood of γ, that we
denote by S. The Whitney move pushes the strip S across DE. The outcome has S replaced
by two parallel copies of the Whitney disc D together with a strip whose core is parallel to δ.
This is an isotopy of the surface P (if P 6= Q), and a regular homotopy of P ∪Q. The latter
fact holds since we have described a homotopy through local embeddings. Note that we used
a framed and embedded Whitney disc with interior in the complement of P ∪Q, and the two
intersection points p and q were removed, as desired.

In the case thatD is framed, but not embedded, or the interior intersects P∪Q, the Whitney move,
now called a (framed) immersed Whitney move, still uses the same strip S in a neighbourhood of
δ, and two copies of D obtained using s and −s, where s is a section of the normal bundle. The
resulting move is a regular homotopy of P , and not an isotopy, even if P 6= Q. In particular,
the intersection points p and q are removed by an immersed Whitney move, but four new self-
intersection points of P are created for each self-intersection point of D, and two new intersections
of P ∪Q are created for each intersection of the interior of D with P ∪Q.

In more generality, if D intersects a surface Σ, where Σ may equal P or Q, but need not, then
two intersection points of P with Σ are created for each intersection point of D with Σ.

3.3. When can we perform the Whitney trick? Let P and Q be oriented surfaces inter-
secting transversely at points p and q with opposite sign, within a smooth, oriented, simply
connected ambient 4-manifold M . Choose arcs γ and δ as above, and let C denote the loop γδ−1.
Since M is smooth and simply connected, we can find an immersion ∆: D2 #M with boundary
C. In general, we will wish to perform an isotopy of P with the result of removing the two
(algebraically cancelling) intersection points p and q. To do so, we need to find an embedding
∆: D2 →M such that the following three conditions are satisfied.

(1) ∆ is an embedding.
(2) ∆(IntD2) ∩ (P ∪Q) = ∅.
(3) ∆(D2) is framed, meaning that the relative Euler number is trivial.

We next consider when the above conditions are satisfied.

Remark 3.1. For the purposes of these lectures, we will restrict ourselves to simply connected
ambient 4-manifolds as much as possible. However, the theory does apply to 4-manifolds with
more general fundamental groups, where it may not be immediate that Whitney circles are
null-homotopic. In these settings one needs a more precise algebraic count of intersections, called
the equivariant intersection and self-intersection numbers. See for example Exercise 5.3. The
theory also applies to non-orientable 4-manifolds, in which case we must begin with a specified
orientation at a given basepoint and transport these along specified paths to determine the signs
of intersection points of surfaces. We will avoid talking about this more general setting as much
as possible; the interested reader is directed to [PRT20,KPRT21].

3.3.1. Boundary twisting. Suppose we have two immersed surfaces A and B in a 4-manifold M
such that part of the boundary of B is embedded in A, as shown in Figure 6, and this part of
∂B lies in the interior of M , for example, when B is a Whitney disc pairing intersection points
of A with itself or some other surface. The operation of boundary twisting B about A consists of
changing a collar of B near a point in its boundary on A, as depicted in Figure 6. Note that
this creates a new point of intersection between A and B and changes the framing of B by a full
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twist. The upshot of this paragraph is that given an immersed disc with boundary C, we may
modify it using boundary twists so that the result is framed.

Figure 6. Top: Surfaces A and B in a 4-manifold M such that part of the
boundary of B is embedded in A. Middle: Cross sections of the picture on top,
before boundary twisting. Bottom: Cross sections of A and B, after boundary
twisting. Note the new point of intersection between A and B in the middle cross
section.

3.3.2. π1-negligibility. In general, if π1(Mr(P ∪Q)) = 1 we may assume that the image of Int(D2)
under ∆ lies in the complement of P ∪Q. This occurs precisely when P ∪Q has geometrically
dual spheres, i.e. immersed spheres P⊥, Q⊥ ⊆ M so that P⊥ t P a point and P⊥ t Q = ∅,
as well as Q⊥ t Q a point and Q⊥ t P = ∅. However, there is a problem here: namely, this
condition does not guarantee that ∆ is framed. We can use boundary twisting to correct the
framing, but this will introduce new intersections between the interior of ∆ and P or Q.

The best compromise in this situation is to ask for framed geometrically dual spheres, i.e. we
assume that P⊥ and Q⊥ above have trivial normal bundle. In this case, we can start with an
arbitrary ∆: D2 #M , boundary twist to correct the framing, and then tube into P⊥ and Q⊥
as appropriate (see Figure 7) to ensure that the interior of ∆ lies in the complement of P ∪Q.
See Exercise 5.2.

Figure 7. Suppose that P⊥ intersects P precisely once. Then given any inter-
section between ∆ and P , we may tube it into P⊥. More precisely, we perform an
ambient connected sum of ∆ and a pushoff of P⊥ using the meridional annulus
of an embedded arc on P .

3.3.3. Embedding discs. The discussion so far shows that we can find a framed, immersed Whitney
disc ∆ for C with interior in the complement of P ∪Q. This leaves us with the question: when
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can we improve an properly immersed disc in a 4-manifold to an embedded disc, relative to the
boundary?

Unfortunately, not every proper, immersed disc in a 4-manifold can be replaced by an embedded
disc, relative to the boundary. To see this, note that every knot K ⊆ S3 is the boundary of a
proper, immersed disc – this follows directly from the fact that π1(B4) = 1, or alternatively,
we see a concrete proper, immersed disc given by the cone on the knot. A knot which bounds
a smooth, proper embedded disc in B4 is said to be smoothly slice [FM66]. Not all knots are
smoothly slice, for example, the trefoil. See the Piccirillo mini-course for more on slice knots.

However, in certain cases immersed discs may be promoted to embedded discs. This is precisely
the content of the celebrated disc embedding theorem, which we now state in a preliminary form.
We will discuss a far more general form later in the lectures.

Theorem 3.2 (Disc embedding theorem, preliminary version [Cas86,Fre82,FQ90]). Let M be a
smooth, oriented, simply connected 4-manifold. Suppose we have a map

D2 M

∂D2 ∂M,

f

where f |∂D2 is a flat embedding. Suppose further that there is an immersion g : S2 #M such
that the algebraic intersection number λ(f, g) = 1, the algebraic self-intersection number µ(g) = 0,
and g(S2) has trivial normal bundle.

Then there exists a flat embedding f : D2 ↪→ M with f |∂D2 = f |∂D2, and inducing the same
framing on the boundary.

In the statement above, the intersection number λ(f, g) is the signed count of intersections
between f(D2) and g(S2). Similarly the self-intersection number µ(g) is the signed count of
self-intersections of g(S2). Both of these quantities have analogues for non-simply connected M ;
see for example Exercise 5.3.

3.4. Contraction and push off. Let Σ be a closed surface in a 4-manifold M . A cap for Σ is
a (potentially immersed) disc in M with boundary a homologically essential simple closed curve
on Σ. We insist that the surface induced framing matches the framing on the boundary of the
cap induced by its normal bundle. A capped surface is an embedded surface Σ in M , along with
its normal bundle, and a collection of caps attached to a symplectic basis for curves for the first
homology of Σ.

The (symmetric) contraction of a capped surface, depicted in Figure 8, converts a capped surface
into an immersed sphere. As shown in the figure, we surger the surface using two copies of each
cap, joined by a square at the points of intersection of the boundaries. One could alternatively
contract a capped surface by only surgering along one disc per dual pair (this would then be called
asymmetric contraction, see Figure 9), but this would not enable the pushing off procedure that
we are about to describe in the next paragraph. Henceforth, whenever we talk about contraction,
by default we will mean the symmetric contraction. Observe that the result of contracting a
capped surface has algebraically cancelling self-intersections, in particular since we insisted on
the framings matching up correctly.

After contracting a capped surface Σc with body Σ, any other surface A ⊆M that intersected
the caps of Σc can be pushed off the contracted surface, as we describe in Figure 10. The
fact that we can perform the pushing off procedure, which is a regular homotopy, shows that
the intersection number of the contracted surface with A agrees with the intersection number
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Figure 8. Left: A capped surface with embedded caps. Only the 2-skeleton is
shown. Right: The result of (symmetric) contraction.

Figure 9. Left: A surface with an embedded cap. Only the 2-skeleton is shown.
Right: The result of (asymmetric) contraction. Warning: this is not what we will
mean by a contraction in the sequel.

of A with the (uncapped) surface Σ, i.e. there is no new contribution from the caps. (A key
observation is that this latter fact holds regardless of the ambient 4-manifold or its fundamental
group.) The push off procedure reduces the number of intersection points between the contracted
surface (an immersed sphere) and the pushed off surfaces, so we gain some disjointness at the
expense of converting a capped surface into an immersed sphere. An additional cost is as follows.
Suppose that a surface A intersects a cap of the capped surface, and a surface B intersects a
dual cap. Then after pushing both A and B off the contraction, we obtain two new (algebraically
cancelling) intersection points between A and B.
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Figure 10
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4. Freedman’s h-cobordism theorem

We will outline the proof of the following theorem.

Theorem 4.1 (Category losing h-cobordism theorem [Fre82]). Let W 5 be a smooth, compact,
oriented, simply connected h-cobordism from M4

0 to M4
1 . Then W ≈M0 × [0, 1].

More specifically, there exists a homeomorphism ϕ : W → M0 × [0, 1], where the restriction
ϕ|M0 : M0 →M0 is the identity map. Note that the restriction ϕ|M1 is a homeomorphism from
M1 to M0.

Remark 4.2. Unlike in Theorem 2.2, the above theorem only asserts the existence of a homeo-
morphism rather than a diffeomorphism. Indeeed, the work of Donaldson shows that there is no
analogous category preserving statement, i.e. there exist smooth, compact, oriented, simply con-
nected h-cobordisms that are not smoothly trivial. This was first shown by Donaldson in [Don87],
specifically that CP2#9CP2 and its (2, 3) logarithmic transform, called the Dolgachev surface,
are not diffeomorphic. As closed, smooth, simply connected, oriented 4-manifolds, they are
smoothly h-cobordant by Wall’s theorem (Theorem 2.8). By Freedman’s theorem (Theorem 4.1),
they are also homeomorphic. In particular, this implies the existence of a smooth, compact,
simply connected, oriented h-cobordism between closed 4-manifolds which is homeomorphic,
but not diffeomorphic, to a product. Particularly nice examples of such h-cobordisms have also
been found, consisting of a single 2-handle and 3-handle each. The first example was found by
Akbulut in [Akb91], between blowups of the K3 surface and its logarithmic 0-transform, and
other examples of such h-cobordisms between blowups of elliptic surfaces and their logarithmic
0-transforms were constructed by Biz̆aca and Gompf in [BG96].

As previously mentioned, the combination of Theorem 2.8 and the above theorem proves
Theorem 1.1. As a special case, we have the following category losing case of the Poincaré
conjecture.

Corollary 4.3. Every smooth homotopy 4-sphere is homeomorphic to S4.

In a subsequent lecture, we will consider the corresponding fully topological Poincaré conjecture
in dimension four, i.e. that topological homotopy 4-spheres are homeomorphic to S4 as well.

Outline of the proof of Theorem 4.1. As in the proof of Theorem 2.8, we can assume there is a
handle decomposition of W relative to M0 with only 2- and 3-handles. For simplicity, primarily
of notation, we assume henceforth that there is a single 2-handle and a single 3-handle (and no
other handles) in the decomposition. Let M1/2 denote the middle-level of W , i.e. the 4-manifold
produced after adding the 2-handle to M0 × {1}, or equivalently, by adding the upside down
3-handle (i.e. a 2-handle) toM1. As before, we know thatM1/2 ∼= M0#(S2×S2) ∼= M1#(S2×S2).
Let P denote the belt sphere of the 2-handle and Q denote the attaching sphere of the 3-handle.
Note that P,Q ⊆M1/2, whereM1/2 is smooth, closed, simply connected, and oriented. SinceW is
an h-cobordism, we know that λ(P,Q) = 1. This means that P and Q intersect algebraically once
(counted up to sign), but may intersect geometrically many more times. We now make another
simplifying assumption: assume that P and Q intersect geometrically three times, i.e. there is
one extraneous pair of intersections. Our goal is to isotope Q so that P t Q is (geometrically) a
single point. If we achieve this, we will be able to cancel the 2-handle and the 3-handle in W ,
indicating that W is a trivial cobordism, that is, a product. Spoiler alert: we will be able to do
this via a merely topological isotopy, indicating that W is homeomorphic (but not necessarily
diffeomorphic) to the product M0 × [0, 1].

As a preliminary step, we prove the following lemma.
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Lemma 4.4. There exist framed, immersed spheres P⊥, Q⊥ ⊆ M1/2 so that P⊥ t P a point
and P⊥ t Q = ∅, as well as Q⊥ t Q a point and Q⊥ t P = ∅.

Figure 11

Proof. From our previous discussion, we know that there exist framed, embedded spheres P⊥ and
Q⊥ in M1/2 so that P t P⊥ is a single point and Q t Q⊥ is a single point (these are respectively
the dual spheres S2 × {pt} in the decomposition M1/2 ∼= M0#S2 × S2 ∼= M1#S2 × S2). The
problem is that we have no control over how P⊥ interacts with Q, and how Q⊥ interacts with P .
We will now ensure they interact the way we wish, at the expense of changing them from being
embeddings to immersions.

First we work with P⊥. Tube every point of intersection between P⊥ and Q into parallel copies of
P . That is, we repeatedly perform an ambient connected sum of P⊥ and an appropriately oriented
copy of P inside M1/2 along a suitable arc. This might increase the number of intersections
between P⊥ and Q⊥, or make P⊥ immersed, but we do not mind. Now all the intersections
between P⊥ and Q can be paired by Whitney discs in M1/2. Consider some such framed,
immersed Whitney disc W . If we perform the Whitney move on P⊥ along W right now we would
be in danger of creating new intersections of P⊥ with whatever W intersects, which a priori
might be any of P , Q, P⊥, or Q⊥. However, we do not mind intersections between P⊥ and Q⊥
nor self-intersections of P⊥. So the only problems are caused by intersections of W with P or Q.

We can remedy the Q intersections by tubingW along Q into push-offs of Q⊥, where the push-offs
use sections of the normal bundle transverse to the 0-section. This may lead to new intersections
of W with P . Consequently, the new W only has problematic intersections with P which, in
turn, can be removed by isotoping P off W by finger moves in the direction of Q, as shown in
Figure 11. (By switching perspective, we think of these as isotopies of Q rather than of P .) At
this point, we have possibly made the new Whitney disc more singular (if Q⊥ meets W then
tubing W into Q⊥ creates new self-intersections of W ) and created new (algebraically cancelling)
intersections between P and Q, but this does not worry us for now. A Whitney move on P⊥
along the new (framed) W produces a (probably immersed) geometric dual for P away from Q,
as needed. We still call the result P⊥.

By applying a similar process, we can upgrade Q⊥ to a framed, immersed geometrically dual
sphere for Q which does not intersect P , as claimed. �

By the discussion in Section 3.3, we see that there is a framed, immersed Whitney disc ∆ for the
extraneous pair of intersections between P and Q, with interior lying in M1/2r (P ∪Q). We wish
to apply the disc embedding Theorem 3.2 to ∆, so we check all the hypotheses. By Exercise 5.2,
we know that π1(M1/2r (P ∪Q)) is trivial, due to the existence of P⊥ and Q⊥ from Lemma 4.4.
Since P and Q are smooth, M1/2r (P ∪Q) is a smooth 4-manifold. The only missing ingredient
is the algebraically dual sphere. This will come from the Clifford torus Σ at either of the two
double points paired by ∆, see Figure 12.
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Figure 12

Caps for Σ are provided by meridional discs for P and Q. However, for a contraction we want to
use caps which are disjoint from P ∪Q. Tube the current caps of Σ, namely meridional discs
to P and Q, into the spheres P⊥ and Q⊥ respectively. Since the latter spheres are framed, the
resulting caps still have the correct framing on the boundary. See Figure 12. The resulting caps
lie in Mr (P ∪Q), so the (immersed) sphere g produced by contraction does as well. Since each
cap was used twice, the self-intersection number µ(g) = 0. Since Σ has trivial normal bundle,
and we contracted using correctly framed caps, g(S2) also have a trivial normal bundle. Finally,
since we produced the sphere g by contracting a Clifford torus, it satisfies λ(∆, g) = 1.

Thus, the disc ∆ and the algebraically dual sphere g in the manifold M1/2r (P ∪ Q) satisfy
the requirements of the disc embedding Theorem 3.2. Use the resulting framed, flat, embedded
Whitney disc ∆ in M1/2r (P ∪ Q) for the extraneous pair of intersections between P and Q
to perform the Whitney trick on Q. In particular, this is a topological isotopy of Q. In the
corresponding (topological) handle decomposition for W , the 2- and 3-handles can be cancelled,
and we see that W is homeomorphic to the product M0 × [0, 1], as claimed. �
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5. Outline of proof of the disc embedding theorem

In this section we give an extremely sketchy outline of the proof of the preliminary version of the
disc embedding theorem stated before. The general version is proved in [Cas86,Fre82,FQ90],
with an amendment in [PRT20] related to geometrically dual spheres. For a unified treatment
with many details and pictures see [BKK+21]. We only outline the proof of the preliminary
version of the theorem.

Broadly speaking, the proof has two main steps, as we now describe. We begin with a smooth,
oriented, simply connected 4-manifold M , as well as a continuous map

D2 M

∂D2 ∂M,

f

where f |∂D2 is a flat embedding, and an immersion g : S2 #M such that the algebraic intersection
number λ(f, g) = 1, the algebraic self-intersection number µ(g) = 0, and g(S2) has trivial normal
bundle.

The first step of the proof is the constructive step, and replaces a neighbourhood of f(D2) with
a 4-dimensional object called a skyscraper. We will not precisely define what a skyscraper is,
for now, restricting ourselves to the remark that a skyscraper is meant to be an approximation
of a 2-handle. In particular, it has a prescribed attaching region, i.e. a subset of its boundary
which is parametrised as a solid torus. Constructing a skyscraper uses techniques essentially
due to Casson [Cas86], although his constructions were specifically in simply connected ambient
4-manifolds, and are called Casson handles. We prefer to talk about skyscrapers instead, since
they apply in more general settings. The first step of the proof shows that there is a skyscraper
in M , whose attaching region agrees with the framed boundary of f(D2).

The second step of the proof is the detection step, and comprises the key insight of Freedman,
namely that every skyscraper is homeomorphic to D2 × D2, relative to the attaching region.
In other words, there is a homeomorphism from the skyscraper to D2 ×D2, which preserves
the parametrisation of the boundary in a precise way. The core of this D2 ×D2 provides the
embedding of a disc needed in the disc embedding theorem, and we see it is flat since it comes
equipped with a product neighbourhood.

5.1. The constructive step of the proof. Beginning with f and g, first perturb f to be
an immersion with transverse self-intersections, and then tube every self-intersection into the
unpaired intersection point between f and g, along an arc on f . I.e. take the ambient connected
sum of f(D2) with many parallel pushoffs of g(S2). We still call the result f . Note that now all
the intersections of f arise as parallel copies of intersections of g, and are therefore algebraically
cancelling (this uses that g(S2) has trivial normal bundle). We have created more intersections
between f and g in this process, as parallel pushoffs of the old intersections between f and g, but
these also arise as algebraically cancelling pairs. At this point, we have arranged that µ(f) = 0,
while preserving the boundary of f , and that λ(f, g) = 1.

Next we perform a regular homotopy of f and of g, to arrange that f and g intersect geometrically
in a single point. While this may seem counter intuitive at first (e.g. you might be wondering
why we did not simply do this for the P and Q in the proof of Freedman’s h-cobordism theorem),
the key point is that the number of geometric self-intersections of f and of g may increase in this
process. Let W be an immersed Whitney disc in M , pairing extraneous pairs of intersections
between f and g (since λ(f, g) = 1, all but one of the intersections of f and g can be paired up).
After boundary twisting, we assume that W is framed. Push every intersection of f with the
interior of W towards f along an arc on W , until the intersection is removed, by paying the
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price of two (algebraically cancelling) self-intersections of f . Similarly, push all intersections of g
with the interior of W towards g along an arc on W . Make sure all the arcs used for pushing
are disjoint. At the end of this process, the interior of W lies in the complement of f and g,
so perform an (immersed) Whitney move on f along W . Still call the result f . This process
removes one of the extraneous pairs of f, g intersections. Continue with the other pairs, until
only the unpaired intersection point remains. At this point, we have that µ(f) = 0 (since the
new self-intersections arose as cancelling pairs), and f t g a single point.

To be continued

5.2. The detection step of the proof. We will barely scratch the surface of this step of the
proof. Below we state the main theorem.

Theorem 5.1 (Skyscrapers are standard [Fre82,FQ90], see also [BKK+21]). Every skyscraper
is homeomorphic to D2 ×D2, relative to the attaching region.

The proof requires understanding of Kirby diagrams and decomposition space theory. See the
Piccirillo mini-course for much more about Kirby diagrams. Decomposition space theory is
a beautiful, if somewhat outmoded, branch of topology, which seeks to address the following
question.

Question 5.2. Let X be a metric space and A = {A1, A2, . . . } a disjoint collection of subsets
of X. Let X�A denote the quotient of X by A, where we identify each element of A to an
individual point, i.e. a different point for each Ai. When is X�A ≈ X?

Other notable successes of decomposition space theory include Brown’s proof of the Schoenflies
theorem [Bro60] and Cannon’s proof of the double suspension theorem [Can79] (see also [Edw06]).
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Exercises for Lecture 2

Introductory problems.

Exercise 5.1. Let P and Q denote the xy- and zt-planes in R4 respectively, all three with their
standard orientations. Let S denote the sphere of unit radius in R4, centred at the origin and
orientation induced by the outward pointing normal. Show that S ∩ (P ∪Q) is the Hopf link.
Which Hopf link is it?

Exercise 5.2. Let P and Q denote framed, embedded 2-spheres in a closed, smooth, oriented,
simply connected 4-manifold M1/2. Assume there are framed, immersed spheres P⊥, Q⊥ ⊆M
with P⊥ t P a point and P⊥ t Q = ∅, as well as Q⊥ t Q a point and Q⊥ t P = ∅. Show that
π1(M1/2r (P ∪ Q)) is trivial. Which of the conditions in the hypotheses were needed in the
argument?

Moderate problems.

Exercise 5.3 ((Equivariant) intersection number). Let M be a connected, oriented, smooth
4-manifold with basepoint m ∈M . Let f : S2 #M and g : S2 #M be smooth immersions. Fix
an orientation on S2 and a point s ∈ S2. Assume that f(S2) and g(S2) intersect transversely.
Let vf and vg be paths in M joining m to f(s) and g(s) respectively; these are called whiskers
for f and g respectively. Define the following sum

λ(f, g) :=
∑

p∈f(S2)tg(S2)
ε(p)α(p),

where

− γpf is the image of a simple path in S2 from s to a point in f−1(p) and γpg is the image of
a simple path in S2 from s to a point in g−1(p);

− ε(p) ∈ {±1} is the sign of the intersection point p (recall that both S2 and M are
oriented);

− α(p) is the element of π1(M,m) given by the concatenation vfγpf (γpg )−1v−1
g .

Prove that

(i) λ(f, g) does not depend on the choice of γpf and γpg .
(ii) if λ(f, g) = 0, then the points of f(S2) t g(S2) are paired up by maps of Whitney discs,

i.e. the points can be paired by {p1, q1, p2, q2, . . . , pn, qn} for some n, so that for each i,
there exist arcs wi ⊆ f(S2) and w′i ⊆ g(S2), with endpoints pi and qi, such that that the
concatenation w′i · w−1

i is freely null-homotopic in M .

Exercise 5.4. Formulate a version of Freedman’s h-cobordism theorem for 4-manifolds with
boundary. Outline a proof using relative handle decompositions.

Let C be a smooth, compact, contractible 4-manifold, i.e. a cork. Prove that every diffeomorphism
f : ∂C → ∂C extends over C.

Why did we need C to be smooth and f to be a diffeomorphism (rather than just a homeomorph-
ism)?

Challenge problems.

Exercise 5.5. Upgrade the disc embedding theorem to the following sphere embedding theorem:
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Theorem 5.3 (Sphere embedding theorem, preliminary version). Let M be a smooth 4-manifold
and F : S2 #M a smooth immersion with only isolated double point singularities and µ(F ) = 0,
i.e. the signed sum of the self-intersections is zero. Suppose there exists another smooth immersion
G : S2 #M so that G(S2) has trivial normal bundle, F (S2) and G(S2) intersect transversely,
and λ(F,G) = 1, i.e. the signed sum of intersections between F and G is 1.

Then F is homotopic to a flat embedding F : S2 ↪→M .

Use the following steps:

(1) Make f and g geometrically dual, i.e. up to adding more (algebraically cancelling)
self-intersections of f and of g, assume that f(S2) and g(S2) intersect precisely once.

(2) Apply the disc embedding theorem to Whitney discs pairing the intersections of f(S2).
Why can we get these discs to lie with interior in Mr f(S2)?

(3) Use Clifford tori to produce algebraically dual spheres for the application of the disc
embedding theorem.

Exercise 5.6. Use the sphere embedding theorem to construct a closed, topological 4-manifold

with intersection form E8⊕ E8⊕ 2H, where H is the hyperbolic matrix
[

0 1
1 0

]
.

The K3 surface is a good place to start, recall that it has intersection form E8 ⊕ E8 ⊕ 3H.
Your goal is to do surgery to remove the extra H summand. What would be need to ensure the
result of surgery is simply connected? Does there exist a closed, smooth 4-manifold with this
intersection form?
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6. Two paths to the fully topological 4-dimensional Poincaré conjecture

A special case of Theorem 1.1 states that every smooth homotopy 4-sphere M is homeomorphic
to S4. To see this note that π1(M) = 1 = π1(S4) and H2(M ;Z) = H2(S4;Z) = 0 so there is no
intersection form.

As a reminder, the proof of Theorem 1.1 had two steps. First we applied a theorem of Wall
(Theorem 2.8) to see that M and S4 cobound a smooth, compact h-cobordism W . Then we
applied Freedman’s h-cobordism theorem (Theorem 4.1), whose proof was inspired by Smale’s
high dimensional version (Theorem 2.2), to see that the h-cobordism (W ;M,S4) is homeomorphic
to S4 × [0, 1]. The homeomorphism restricted to M shows that M ≈ S4.

In all of this, we had to start by assuming that M is smooth. Our next aim is to remove this
hypothesis, i.e. we will show the following theorem.

Theorem 6.1. Let M be a topological manifold such that M is homotopy equivalent to S4. Then
M is homeomorphic to S4.

Observe that the above has the corollary that every homotopy 4-sphere admits a smooth structure:
pull the standard smooth structure on S4 back along the homeomorphism M → S4. However,
this is not known a priori, so we cannot directly apply smooth techniques to the proof.

We have the two following proof strategies.

(1) Our first option is to build a topological h-cobordism from M to S4, and then prove a
topological compact h-cobordism theorem for 5-dimensional h-cobordisms. The latter is
a result of Quinn which we will discuss. We will also discuss the former, but it will be
based on more classical tools in topology (i.e. no Freedman-Quinn machinery needed).

(2) Freedman [Fre82] in fact followed a different strategy, in which he used smooth results
as much as possible. This was partly motivated by the fact that the topological tools
necessary to follow the first strategy did not yet exist, and Freedman wanted to prove
the Poincaré conjecture as quickly as possible, in particular with time to spare before his
40th birthday.

Specifically, he considered M \ {pt}, which is a contractible open topological manifold.
By results of Lashof from the 1970s [Las70a,Las70b,Las70c,Las71] we have thatM\{pt} is
smoothable. One then sees thatM \{pt} and R4 (with its standard smooth structure) are
smoothly properly h-cobordant (see Exercise 7.2). Then Freedman proved a noncompact
proper h-cobordism theorem, showing that smooth, simply connected, 5-dimensional
proper h-cobordisms that are in addition simply connected at infinity, are (proper)
homeomorphic to products.

As a consequence of the above, one sees that M \ {pt} and R4 are homeomorphic.
Extending over one point compactifications, we see that M and S4 are homeomorphic.

We will discuss the second approach further in a subsequent lecture. For now we focus on the first
approach, because along the way we will establish many tools that are useful in other contexts.

6.1. The first approach.

6.1.1. An analogue of Wall’s theorem. Let M4 be a topological manifold. We will now show that
if M ' S4, then M and S4 are topologically h-cobordant.



26 KOSANOVIĆ, ORSON, POWELL, RAY, AND RUPPIK

Definition 6.2. Let X be a topological space. A closed subspace A ⊆ X is 1-locally coconnected
(1-LCC), if for all a ∈ A and for every neighbourhood U 3 a there exists a neighbourhood V ⊆ U
such that π1(V r A)→ π1(Ur A) is the trivial map, for every choice of basepoint.

For example, for a point x ∈Mn in a manifold we have arbitrarily small neighbourhoods of x
homeomorphic to Rn, so x ∈M is 1-LCC provided n ≥ 3.

Consider the homotopy sphere M . The cone on M is by definition the space cone(M) :=
M × [0, 1]�M × {1}. One can show that cone(M) is an ANR homology 5-manifold; by definition,
this means that cone(M) is an absolute neighbourhood retract and a homology 5-manifold.
Briefly, a space X is said to be an absolute neighbourhood retract (ANR) if for every embedding
of X as a closed subset C(X) in a metrisable space Y , there is a neighbourhood U(X) of C(X)
in Y and a retraction U(X)→ C(X). Topological manifolds are ANRs. A homology n-manifold
is a space Y satisfying

Hk(Y, Y r {x};Z) ∼=
{
Z k = n

0 k 6= n.

for every x ∈ Y . Note that topological n-manifolds are homology n-manifolds.

The only potentially non-manifold point of cone(M) is the cone point v. We observe that v is
1-LCC: for any neighbourhood U of v we can take V ⊇ U as a “smaller cone”, so V r v ' M ,
which is simply connected.

By a theorem of Bryant and Lacher [BL78], the space cone(M) is then a topological 5-manifold.
We can then remove an open 4-ball neighbourhood to obtain a topological h-cobordism from
M to S4. Once we have proven the fully topological 5-dimensional h-cobordism theorem, we
can apply this to see that M ≈ S4. The Bryant-Lacher theorem is proved using techniques
of decomposition space theory, which we mentioned earlier in Section 5. In particular, these
techniques do not respect smooth structures.

6.1.2. A fully topological h-cobordism theorem. We begin with some definitions.

Definition 6.3. A k-dimensional (topological) submanifold Σ ⊆Mn is locally flat if every point
p ∈ Σ has a neighbourhood U ⊇ Σ such that (U,U ∩ Σ) ≈ (Rn,Rk).

Two (topological) submanifolds Σk
1,Σl

2 ⊆ Mn intersect transversely at a point p if there is a
neighbourhood U of p such that

(U,U ∩ Σ1, U ∩ Σ2) ≈ (Rn,Rk × {(0, . . . , 0)}, {(0, . . . , 0)} × Rl).

In other words, within the neighbourhood U , Σ1 and Σ2 appear, up to homeomorphism, as
transverse linear subspaces.

A useful exercise at this point is to return to the proof of Freedman’s h-cobordism theorem
(Theorem 4.1) and consider precisely where and how we used that the ambient manifold is
smooth. We assert that only five ingredients were necessary, and we state below their topological
counterparts, which are all we need in order to carry out the identical proof strategy in the fully
topological setup.

(1) 5-dimensional topological manifolds admit topological handle decompositions (see Re-
mark 2.4)

(2) Topological transversality: if Σ1,Σ2 are locally flat submanifolds of a topological 4-
manifold then there exists a topological isotopy from Σ1 to Σ′1 such that Σ′1 and Σ2
intersect transversely.
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(3) Every locally flat submanifold of a topological 4-manifold has a normal bundle, unique
up to isotopy.

(4) The immersion lemma: Every continuous map f : F →M , where F is a surface and M
a topological 4-manifold is homotopic to a topological immersion, i.e. a map which is
locally a locally flat embedding, where the self-intersections are transverse.

(5) The fully topological disc embedding theorem (preliminary version): Let M be a topolo-
gical, oriented, simply connected 4-manifold. Suppose we have a map

D2 M

∂D2 ∂M,

f

where f |∂D2 is a flat embedding. Suppose further that there is a topological immersion
g : S2 # M such that the algebraic intersection number λ(f, g) = 1, the algebraic self-
intersection number µ(g) = 0, and g(S2) has trivial normal bundle. Then there exists a
flat embedding f : D2 ↪→M with f |∂D2 = f |∂D2 , and inducing the same framing on the
boundary.

To summarise, once the above tools are available. we can repeat the proof of Theorem 4.1 in the
topological category. As a reminder, ingredient 1 provides a handle decomposition for a compact,
topological h-cobordism W 5 between M0 and M1, which by topological transversality we can
assume consists of only 2- and 3-handles. Then we consider the middle level M1/2, obtained
after attaching the 2-handles. For simplicity like before we assume there is a single 2-handle
and a single 3-handle, with belt sphere and attaching sphere P and Q, respectively, both in
M1/2. By topological transversality, we assume they intersect transversely. Using normal bundles
for submanifolds, we construct immersed spheres P⊥ and Q⊥ such that P⊥ t P a point and
P⊥ t Q = ∅, as well as Q⊥ t Q a point and Q⊥ t P = ∅. Since M1/2 is simply connected,
we assume that the extraneous pairs of intersections between P and Q are paired by maps of
(framed) Whitney discs, which we assume are immersed by the immersion lemma. We construct
algebraically dual spheres the Whitney discs using Clifford tori as before; this process again
involves taking parallel pushoffs, and therefore uses the existence of nice tubular neighbourhoods
in the background. Finally, we use the fully topological disc embedding theorem to upgrade the
framed, immersed Whitney discs to embedded Whitney discs. (We only stated the theorem for
the case of a single disc, but a more general version exists.) Performing the Whitney move on Q
along these embedded discs is an isotopy, at the end of which P and Q intersect at a single point.
Then we know that the corresponding 2- and 3-handle cancel, so that W is homeomorphic to
M0 × [0, 1].

Remark 6.4. We do not recap the proof of the disc embedding theorem here, but indeed all we
need to upgrade the proof from Section 5 is topological transversality, the existence of normal
bundles for locally flat submanifolds, and the immersion lemma. These latter three facts, as
well as the existence of handle decompositions for 5-manifolds, were proved by Quinn [Qui82].
A warning is in order: a key ingredient in his proof is the smooth-to-topological version of the
disc embedding theorem (Theorem 3.2), or rather, more precisely, the fact that skyscrapers are
homeomorphic to 2-handles (Theorem 5.1).

In the subsequent sections, we will indicate the proofs of the above list of ingredients necessary
to prove the fully topological, compact h-cobordism theorem.
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7. Smoothing noncompact 4-manifolds

Our goal in this section is to prove the following key result of Quinn [Qui82]. It will directly
imply the immersion lemma, and the methods we develop in the proof will help us to prove other
fundamental tools in topological 4-manifolds.

Theorem 7.1 (Quinn [Qui82]). Every connected noncompact 4-manifold is smoothable.

It follows immediately that every compact, connected 4-manifold is smoothable in the complement
of a point.

The upcoming proof follows a general framework, which we introduce next. The following notion
comes from [KS77, Essay I, Section 3].

Definition 7.2. Let V be a smooth n-manifold. A handle smoothing problem is a topological
embedding

h : Bk × Rn−k ↪→ V n

such that h is smooth in a neighbourhood of ∂Bk × Rn−k.

We say h can be solved (on Bk ×Bn−k) if there exists a topological isotopy ht : Bk ×Rn−k ↪→ V
from h0 = h to h1 = h′ such that h′|Bk×Bn−k is smooth and ht is fixed on a neighbourhood of
∂Bk × Rn−k and outside a compact neighbourhood of the core Bk × {0}.

Figure 13. Handle smoothing

Remark 7.3. There is an analogue notion in the case of piecewise-linear (PL) manifolds, called a
handle straightening problem, where we ask whether a topological embedding of an open handle
can be isotoped to be a piecewise-linear embedding on its core.

For n ≤ 3 handle smoothing problems can always be solved. This was shown using the torus
trick by Hatcher [Hat13] in dimension 2 and Hamitlon [Ham76] in dimension 3 (Hamilton in fact
showed that in dimension 3 handle straightening problems can be solved, but deep results in
3-manifold topology show that every handle smoothing problem can also be solved).

For n ≥ 5 and k 6= 3, handle straightening problems can always be solved. The missing
k = 3 case is related to the Kirby-Siebenmann invariant. In general high-dimensional handle
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smoothing problems cannot be solved: otherwise the smooth Poincar’e conjecture would hold
in all dimensions. However for n ≥ 5, handle straightening and smoothing problems that are
concordant to a solved problem can be solved, which turns out to be extremely useful. These can
all be proved using Kirby’s celebrated torus trick. The first instance of this was in the k = 0, n ≥ 5
case by Kirby [Kir69]. The other high-dimensional cases were done in [KS77, Essay I]. Handle
straightening and smoothing is a key ingredient in Kirby-Siebenmann’s proof that concordance
implies isotopy for piecewise-linear and smooth structures in high dimensions, from which
they derived the product structure theorem, a key ingredient in establishing fundamental tools
(like topological transversality and the existence of topological handle decompositions) in high
dimensions. The product structure theorem, together with the fact that the groups of homotopy
spheres are finite, can also be used to show that compact manifolds of dimension ≥ 5 have at
most finitely many smooth structures.

To motivate the upcoming proof of Theorem 7.1, we show that smoothing handles provides
smooth structures on manifolds.

Theorem 7.4. Fix n and assume all handle smoothing problems for n-dimensional handles of
every index are solvable. Then every topological n-manifold with empty boundary admits a smooth
structure.

Note that by [Hat13,Ham76], this shows that all topological n-manifolds with dimension ≤ 3
admit smooth structures. See also Exercise 7.4 for other applications of handle smoothing.

Proof. Let M be a topological n-manifold. Let {hi : Rn → Mn} be a locally finite, countable
collection of coordinate charts. This means that every compact set in M intersects at most
finitely many charts. Define Uj :=

⋃
i≤j hi(Rn). We will smooth M by induction, which will

suffice despite the possibility that we have infinitely many charts since the collection is locally
finite. U1 admits a smooth structure as the homeomorphic image of Rn. Suppose we have a
smooth structure on Uj−1. Define W := h−1

j (Uj−1). Note that W is an open subset of Rn.

There is a triangulation of W consisting of simplices whose size decreases to zero as we approach
the frontier. To see this, start with a cubulation of Rn into unit cubes. Subdivide each cube with
nonempty, proper intersection with W , and iterate to infinity. Subdivide the resulting cubulation
of W into simplices to get a triangulation. A standard process produces a handle decomposition
from a triangulation. Explicitly, for a k-simplex σ in a triangulation T of a manifold N , we
obtain a handle of index k given by

St(σ̂) ⊆ T ′′

where T ′′ is the second barycentric subdivision of T , σ̂ is the barycentre of σ, and St denotes the
star. See Figure 14 for an example and [Hud69, p. 233] for further details.

(a) Circle (b) 2-simplex

Figure 14. Construction of a handlebody decomposition from a triangulation.
0-handles are coloured orange, 1-handles are purple, and the 2-handle is yellow.

By the construction of the handle decomposition from the triangulation, we see that each handle
Bk ×Bn−k extends to a neighbourhood Bk × Rn−k. We now solve a series of handle smoothing
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problems, iterating on the index of the handles, beginning with the 0-handles. At each stage, the
handle smoothing problem is Bk×Rn−k ↪→ Uj−1 and we will solve it on Bk×2Bn−k ⊆ Bk×Rn−k
(i.e. on a slight thickening of Bk × Bn−k in the cocore direction). The purpose of using the
ball of radius 2 is to smooth a neighbourhood of the attaching region of handles of the next
higher index, in order to continue the iteration. Combining all the isotopies so far achieved, and
extending by the constant isotopy outside of W , we obtain an isotopy from hj so some new chart
h′j . (Since the simplices have size decreasing to zero as we approach the frontier of W , extending
by the constant isotopy is indeed continuous.) The end result h′j of the isotopy has the same
image in M as hj , but since we made h′j smooth on W , we now obtain a smooth structure on
Uj , compatible with that on Uj−1, as desired. �

We saw earlier that even though high-dimensional handle smoothing problems cannot always
be solved, even partial solutions can have powerful consequences. The same principle applies
here; in particular, Quinn showed the following partial solution for handle smoothing in ambient
dimension four. Note that the result of this theorem is sharp, as indicated in [FQ90, Section 8.5].

Theorem 7.5 (Quinn). Let V 4 be a smooth 4-manifold, and let h : Bk × R4−k ↪→ V be an
embedding such that h|nbd(∂Bk×R4−k) is smooth.

− (k=0,1) Then h can be solved on Bk ×B4−k.
− (k=2) Then h can be solved on W , where W is a neighbourhood of Bk × 0 after either:

(1) topological ambient isotopy rel. ∂Bk × R4−k and rel. infinity; or
(2) a smooth regular homotopy,
namely ht : Bk ×Bn−k ↪→ V rel ∂Bk × R4−k and infinity, with h0 = h and h1|W smooth.

In other words, one cannot immediately smooth 2-handles, but after doing something to the
core (either a topological ambient isotopy or a smooth regular homotopy), it is possible to get a
solution on a neighbourhood of this new subset.

Note that the smooth regular homotopy part of the k = 2 case above implies that every locally
flat slice disc in D4 can be arbitrarily closely approximated by a smooth immersed disc; indeed
the smooth immersed disc is produced from the locally flat slice disc by (small) finger moves.

In addition to Theorem 7.1, Theorem 7.4 has the following powerful corollary.

Corollary 7.6 (4-dimensional annulus theorem). If f : D4 ↪→ Int(D4) is a collared topological
embedding, then D4r f(IntD4) ≈ S3 × [0, 1].

The higher-dimensional analogue of the annulus theorem was proven by Kirby using the torus
trick in [Kir69]. Quinn’s result also completed the proof of the stable homeomorphism conjecture
of Brown and Gluck [BG64]. Here is an important corollary of the annulus theorem.

Corollary 7.7. Connected sum of connected, (oriented/nonorientable) topological 4-manifolds
is well defined.

For the above two statements, see Exercise 8.2 and Exercise 8.1.

We now prove Theorem 7.1.

Proof. Let M4 be a connected noncompact 4-manifold. First we give the proof modulo the
following claim.

Claim. There exists a discrete set S = {sα} ⊆M with Mr S smoothable.
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There exists a locally finite collection of disjoint proper flat rays rα : [0,∞)→M with rα(0) = sα.
One way to build these rays is to consider an exhaustion by compact sets and create the rays
inductively. Details are omitted.

Then Mr ∪αrα([0,∞)) is an open submanifold of Mr S, which is smoothable by the first claim.
Therefore, Mr ∪αrα([0,∞)) is smoothable. However, we also observe that Mr ∪αrα[0,∞) is
homeomorphic to M , and therefore M is smoothable. This completes the proof of Theorem 7.1
modulo the proof of the claim, which we now give.

Proof of the claim. Let {hi : R4 → M} be a countable, locally finite collection of coordinate
charts for M and let

Uj :=
⋃
i≤j

hi(R4).

Assume by induction that there exists a discrete set Sj−1 ⊆ Uj−1 so that Uj−1r Sj−1 is smooth.
To prove the induction step we will add (discrete) points in hj(R4) to Sj−1 to form the set
Sj ⊆ Uj so that Ujr Sj is smooth.

Choose a bicollared codimension one smooth submanifold V ⊆ R4 so that hj(V ) separates
Uj−1r hj(R4) and hj(R4)r Uj−1.

Now apply Quinn’s handle smoothing (Theorem 7.4) to V × (−1, 1). Mor precisely, note that V
is a 3-manifold – take a triangulation of V , and then consider the induced handle decomposition.
Take the product of this handle decomposition with (−1, 1) to obtain a handle decomposition of
V × (−1, 1). Note that although V × (−1, 1) is a 4-manifold, by our construction of the handle
decomposition, we do not have any 4-handles. Using the handle smoothing theorem (the version
with topological isotopy for 2-handles), we obtain an isotopy of hj to h′j , fixed outside h−1

j (Uj−1)
with h′j smooth on a neighbourhood of the 2-skeleton of V ′, where V ′ is obtained from V by a
topological ambient isotopy of R4. Let W ′ denote this neighbourhood of V ′. By choosing the
isotopy and neighbourhoods small enough, and since Sj−1 is discrete, we can ensure that W ′
does not intersect Sj−1 and that V ′ still separates Uj−1r hj(R4) and hj(R4)r Uj−1. Since V ′ is
a 3-manifold, we also know that the complement of the 2-skeleton is a (discrete) collection of
3-balls {B`}.

We will use the neighbourhood h′j(W ′) to patch together the smooth structures on Uj−1 and
h′j(R4). The latter has the smooth structure inherited from the domain R4. Here we know that
h′j(W ′) is a smooth submanifold of h′j(R4), whereas we only have that the image under h′j of the
complement in W ′ of the (now thickened) balls {B`} is smooth in Uj−1. As a result we have a
smooth structure on Uj away from Sj := Sj−1 ∪ {h′j(centres(B`))}, which is discrete. �

�
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Exercises for Lecture 3

Introductory problems.

Exercise 7.1. Let M be a closed n-manifold. Assume that M is simply connected and
H∗(M ;Z) ∼= H∗(Sn;Z). Show that M is homotopy equivalent to Sn.

Moderate problems.

Exercise 7.2.

Definition 7.8. A map between spaces f : X → Y is called proper if the inverse image f−1(K)
of every compact set K ⊆ Y is compact in X. A proper map f : X → Y is said to be a proper
homotopy equivalence if there is a proper map g : Y → X such that f ◦ g and g ◦ f are properly
homotopic to IdY and IdX respectively, meaning that the homotopies are proper maps. A proper
h-cobordism W is a cobordism between manifolds M0 and M1, such that the inclusions Mi ↪→W
are proper homotopy equivalences.

Let M be a smooth 4-manifold with empty boundary which is properly homotopy equivalent to
R4. Let B ⊆M denote the interior of a smooth ball in M . Show that M × [0, 1) ∪B × {1} is a
smooth, proper h-cobordism between M and B.

Exercise 7.3. Look up the trace embedding lemma, that a knot is topologically (resp. smoothly)
slice if and only if the 0-trace has a collared (resp. smooth) embedding in R4. Assume there
exists a knot which is topologically slice but not smoothly slice. Use Theorem 7.1 to show that
there is an exotic smooth structure on R4.

Challenge problems.

Exercise 7.4. Fix n and assume that handle smoothing problems for n-dimensional handles of
every index are solvable.

Prove that every topological n-manifold, with potentially nonempty boundary, admits a smooth
structure. Prove that every homeomorphism of smooth n-manifolds is isotopic to a diffeomorph-
ism.

Health warning: One can prove anything with a false premise. Look up some counterexamples to
the above statements.
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8. Flowchart

We have seen that Quinn’s handle straightening implies the annulus theorem in dimension four
(Corollary 7.6 and Exercise 8.2) and that connected, noncompact 4-manifolds are smoothable
(Theorem 7.1). The 4-dimensional annulus theorem implies that the connected sum of oriented
4-manifolds is well defined (Corollary 7.7 and Exercise 8.1). In other words, we have addressed the
right hand side of the diagram below (Figure 15). The diagram indicates paths to proving some of
the other fundamental tools in 4-manifold topology indicated in Section 6, the immersion lemma,
the existence of normal bundles for locally flat submanifolds, and topological transversality. As
one sees from the flowchart, the key additional result is the controlled h-cobordism theorem,
which was proved by Quinn in [Qui82].

Skyscrapers
are standard

Controlled
h-cobordism
theorem

Handle
smoothing

Annulus
theorem

Connected sum
well defined

Noncompact
4-manifolds
smoothable

Immersion
lemma

Existence of
normal bundles

Topological
transversality

Cor. 7.6

T
hm

.7
.1 C
or
.7

.7

E
x.

8.
4

Figure 15. Logical dependence of some results discussed in the mini-course.

The full discussion of the proofs is beyond the scope of this mini-course. For now we limit
ourselves to sketching the proof of the existence of normal bundles for locally flat submanifolds.
The following is a special case of the result proved by Quinn [FQ90, Theorem 9.3A].

Theorem 8.1. Let X be a topological space and A ⊆ X closed. Moreover, assume the following:

(1) X is ANR homology 4-manifold;
(2) Xr A is a manifold;
(3) A× R is a manifold;
(4) Either dimA 6= 2 and A is 1-LCC, or dimA = 2 and for all a ∈ A and all U 3 a there

exists a neighbourhood V ⊆ U such that Im(π1(V r A)→ π1(Ur A)) ∼= Z.

Then A has a normal bundle in X.
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Remark 8.2. What does dimA mean? One can take it to mean one less than the dimension of
A× R. However one could also apply dimension theory, which allows one to give a meaning to
the dimension of spaces in more generality.

The above theorem implies that closed, locally flat submanifolds have normal bundles. To
see this one must show that locally flat submanifolds have the correct local homotopy groups
(Exercise 8.3). To extend to potentially non-closed submanifolds, one needs the relative version
of the theorem [FQ90, Theorem 9.3A], which is then applied inductively.

Remark 8.3. As previously mentioned, fundamental tools in high-dimensional manifold topology
were established by Kirby-Siebenmann [KS77], and in general Quinn’s work shows that analogous
tools are available in dimension four. The case of normal bundles is curious – not all locally
flat submanifolds in high dimensions are known to have normal bundles – we only know this for
certain codimensions. However, in dimension four there is no codimension restriction.

, which is the middle box at the bottom of the flowchart. It is implied by the noncompact
smoothing theorem. To see this consider X ×R and remove a neighbourhood of A×R, then use
the controlled h-cobordism theorem.

In fact, the controlled h-cobordism theorem implies handle smoothing. The controlled h-cobordism
theorem follows from applying “Skyscrapers are standard”, after setting up the controlled h-
cobordism to have infinitely many skyscrapers of controlled size, all of which we want to replace
by locally flat Whitney discs.

Theorem 8.4 (Freedman). Let Σ be an integral homology 3-sphere. Then Σ = ∂C4 for a
compact, contractible, topological 4-manifold C.

Proof. Consider Σ× I. Pick generators for π1(Σ), push them into interior of Σ× I, and surger
them: remove copies of S1×D3 and replace them with D2×S2. We get closed surfaces obtained
as unions of Seifert surfaces and newly added discs D2 × {p} ⊆ D2 × S2 obtained from the
D2×S2 s added in the surgery. This new 4-manifold has trivial fundamental group, so homology
classes are represented by immersed spheres with algebraic dual spheres from {q}×S2 ⊆ D2×S2.
Apply the sphere embedding theorem to make them embedded, then surger them out. The
resulting W is simply connected and has trivial second homology.

Now we stack countably many copies of W , and consider the one point compactification of
this infinite stacking. (We keep one copy of Σ untouched.) The vertex ∞ added for the 1-
point compactification is 1-LCC, and we check other properties of normal bundles theorem are
satisfied. �
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Exercises for Lecture 4

Introductory problems.

Exercise 8.1.

Theorem 8.5 (Palais [Pal60]). Any two smooth orientation-preserving smooth embeddings of Dn

in a connected oriented smooth n-manifold are smoothly equivalent, i.e. there is an orientation-
preserving diffeomorphism of the ambient manifold taking one to the other.

Use Palais’s disc theorem to prove that connected sum of oriented, smooth n-manifolds is well
defined.

Exercise 8.2 (4-dimensional annulus theorem). Prove Corollary 7.6.

Exercise 8.3. We begin with some definitions (compare Definition 6.2).

Definition 8.6. Let e : Mm ↪→ Nn be an embedding. We say that e is locally flat at x ∈M (or
at e(x) ∈ N) if there exists a neighbourhood U of e(x) in N and a homeomorphism:

h : U → Rn such that h(U ∩ e(M)) = Rm ⊆ Rn, if x ∈ IntM, e(x) ∈ IntN,
h : U → Rn such that h(U ∩ e(M)) = Rm+ ⊆ Rn, if x ∈ ∂M, e(x) ∈ IntN,
h : U → Rn+ such that h(U ∩ e(M)) = Rm+ ⊆ Rn+, if x ∈ ∂M, e(x) ∈ ∂N.

We say that e is locally flat if it is locally flat at each point.

Definition 8.7. Let A ⊆ X be a closed subset of a topological space.

(1) We say that A is k-locally co-connected at a ∈ A, written k-LCC at a, if for every
neighbourhood U of a there exists an open neighbourhood V with a ∈ V ⊆ U such that
any Sk → V r A extends as

Sk V r A

Dk+1 Ur A

In other words, πk(V r A)→ πk(Ur A) is trivial for every choice of basepoints for which
this makes sense.

(2) We say that A has a 1-abelian local group at a ∈ A, written 1-alg, if for every neigh-
bourhood U of a there exists an open neighbourhood V with a ∈ V ⊆ U such that the
inclusion induced homomorphism π1(V r A)→ π1(Ur A) has abelian image, for every
choice of basepoints for which this makes sense.

(3) We say that A is locally homotopically unknotted in X at a ∈ A if A is both 1-alg and
k-LCC at a for every k 6= 1.

Suppose Mm ⊆ Nn is locally flat. If U is as in the first case of Definition 8.6, show the following:

− If n−m = 1, then IntM is k-LCC for all k ≥ 1 except k = 0.
− If n−m = 2, then IntM is locally homotopically unknotted in N at every point.
− If n−m > 2, then IntM is k-LCC for all k ≤ n−m− 2.

If U is as in the second case of Definition 8.6, show the following: ∂M is k-LCC in IntM for all
k in this case.
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If U is as in the third case of Definition 8.6, show the following:
UrM ∩ U ≈ (R1

+ × Rn−1)r (R1
+ × Rm−1) ≈ R1

+ × (Rn−1r Rm−1)
≈ R1

+ × Rm−1 × (Rn−mr {0}) ' Sn−m−1,

so ∂M is k-LCC in ∂N for all k ≤ n−m− 2 in this case.

Remark 8.8. The converse in the second case is also true: if e : M ↪→ N is an embedding,
n−m = 2, and IntM is locally homotopically unknotted in N at every point, then e is locally
flat. This is due to Chapman for dimension ≥ 5 [Cha79] and Quinn for dimension 4 [Qui82] (see
also [FQ90, Theorem 9.3A, Lemma 9.3B]).

There are converses in the other codimensions as well, such as in [Čer73]. Indeed, these may be
applied to certain generalisations of manifolds. See Theorem 8.1 and [DV09, Chap. 7, Chap. 8].

Moderate problems.

Exercise 8.4. Use Theorem 7.1 to prove the immersion lemma (Section 6).
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9. Lecture 5

Corollary 9.1. There is a topological 4-manifold ∗CP2 homeomorphic to CP2 but not diffeo-
morphic to it.

Proof. We start with one 0-handle and one 2-handle, attached to any knot with nontrivial Arf
invariant with framing +1. The boundary is an integer homology sphere, so we can close this
up using a contractible 4-manifold from Theorem 8.4. The result is a simply connected closed
4-manifold with H2 ∼= Z and intersection form +1, so it is homeomorphic to CP2. It is not
diffeomorphic since... �

Exercise 9.2. Find (smooth) 4-manifolds that are homotopy equivalent but are not homeo-
morphic.

Some other results...

9.1. Application to knots.

Theorem 9.3. Alexander polynomial one knots are topologically slice.

Proof. Start with the annulus K × [0, 1] ⊆ Σ× [0, 1] and go through the steps in the proof of
Theorem 8.4 to obtain a 4-manifold W . Stack them up, get a cone-like disk, then make flat... �
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